期刊文献+

改进主成分分析与低秩投影的鲁棒性人脸识别 被引量:2

Robust face recognition based on improved principal component analysis and low-rank projection
在线阅读 下载PDF
导出
摘要 针对光照变化、姿态变化等条件下人脸鲁棒性差的难题,提出了一种改进主成分分析与低秩投影的鲁棒性人脸识别算法。首先利用改进主成分分析对人脸图像进行学习,形成低秩稀疏误差矩阵,然后根据稀疏误差图像计算平滑度和边缘,并进行加权实现人脸识别,最后进行仿真实验。结果表明,相对于当前经典人脸识别算法,本文算法获得更高的人脸识别率,并且具有较强的鲁棒性。 To solve the face poor robust problem in illumination changes,pose variations and other conditions,this paper proposes a robust face recognition algorithm based on improved principal component analysis and the low rank projection. First of all,the improved principal component analysis is used to learn the training samples and obtains low rank sparse error matrix,and then through the calculation of sparse error image smoothness and edge to achieve face recognition,finally the simulation experiments are carried out on Yale and AR face database. The experimental results show that,relative to the current classic face recognition algorithm,the proposed algorithm can not only improve the face recognition rate,and has strong robustness.
机构地区 浙江警察学院
出处 《激光杂志》 北大核心 2015年第7期68-71,共4页 Laser Journal
基金 浙江省中青年学科带头人学术攀登项目(pd2013435) 浙江省教育厅一般(Y201430818)
关键词 主成分分析 人脸识别 低秩投影 特征提取 principal component analysis face recognition low-rank projection features extraction
  • 相关文献

参考文献2

  • 1Fadhlan Hafiz,Amir A. Shafie,Yasir Mohd Mustafah.Face Recognition From Single Sample Per Person by Learning of Generic Discriminant Vectors[J]. Procedia Engineering . 2012
  • 2Wright, John,Yang, Allen Y.,Ganesh, Arvind,Sastry, S. Shankar,Ma, Yi.Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence . 2009

共引文献8

同被引文献32

  • 1唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749. 被引量:90
  • 2苑玮琦,于清澄.一种基于改进主成分分析的人脸识别方法[J].激光与红外,2007,37(5):478-480. 被引量:12
  • 3洪泉,陈松灿,倪雪蕾.子模式典型相关分析及其在人脸识别中的应用[J].自动化学报,2008,34(1):21-30. 被引量:25
  • 4George AN, Belhumeur P N, Krieg D J. From few to many: Illumination cone models for face recognition under variable lighting and pose [ J ]. Pattern Analysis and Machine Intelli- gence, IEEE Transactions on ,2011,23 (6) :643-660.
  • 5Connolly JF, Granger E, Sabourin R. An adaptiye classifica- tion system for video-based face recognition [ J ]. Informa- tion Sciences,2012,192( 1 ) :50-70.
  • 6Xu Yong, Song Feng Xi, Feng Ge, et al. A novel local pre- serving projection scheme for use with face recognition [ J ]. Expert Systems with Applications, 2010, 37 (9) : 6718 - 6721.
  • 7Hsieh P C ,Tung P C. A novel hybrid approach based on sub -pattern technique and whitened PCA for face recognition [ J ]. Pattern Recognition,2009,42 ( 5 ) :978-984.
  • 8Xu Yong, Zhong Aini, Yang Jian, et al. LPP solution schemes for use with face recognition [ J ]. Pattern Recogni- tion ,2010,43 (12) :4165-4176.
  • 9Arandjelovig O. Computationally Efficient Application of the Generic Shape- illumination Invariant to Face Recognition from Video [ J ]. Pattern Recognition,2012,45 ( 1 ) :92-103.
  • 10Zhao W, Chellappa R, Phillips P J,et al. Face recognition a literature survey [ J ]. ACM Computing Surveys, 2003, 35 (4) : 399-458.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部