期刊文献+

粒数衡算与多相流耦合求解刮削制冰的晶粒特性 被引量:1

Crystallization simulation of scraped surface freezer based on coupling model of population balance and multiphase flow
在线阅读 下载PDF
导出
摘要 在考虑晶粒成核、生长、聚并和破碎的情况下,采用分组法求解粒数衡算方程,通过耦合粒数衡算与多相流方程,建立了多尺度的结晶模型,模拟了表面刮削式制冰装置内水的动态结晶过程,获得不同温度、刮削速度、制冰时间等外界条件下晶粒数密度分布、云图等信息,分析了外界宏观条件对水的动态结晶过程的影响。结果表明:由于碰撞引起的晶粒聚并和破碎使得晶粒的尺寸分布更为集中和均匀;在过冷温差(流体局部温度与水的相变温度差值)不大于20℃,刮削速度不大于10r·s-1范围内,降低壁面温度、增加刮削速度可以加速水的结晶与生长。 By discretizing the population equation into different size groups,a method was established for solving the population balance equation coupled with multiphase flow field.A computational fluid dynamics simulation with population balance model was performed for the scraped surface freezer.The algorithm considering nucleation rate,growth rate,crystal aggregation and breakage was used for describing the water dynamic ice-making crystallization process.By using this model,the key role of crystal aggregation and breakage was reappraised,and the ice crystals number density distributions were obtained in the scraped surface freezer.Then the influence of temperature,scraping speed and the crystallization time on the dynamic crystallization process of the water was studied.The results show that the crystal size distribution would be more centralized and uniform with the crystals aggregation and breakage;if the supercold temperature difference is less than 20℃ and the scraping speed is not more than 10 r·s-1 ,the crystallization process would be accelerated by reducing the wall temperature or increasing the scraping speed.
出处 《化工学报》 EI CAS CSCD 北大核心 2016年第S2期128-135,共8页 CIESC Journal
基金 国家自然科学基金项目(U1304521 11402078) 河南省高校科技创新人才支持计划项目(16HASTIT027)~~
关键词 相变 多相流 模型 粒数衡算 结晶 数密度 聚并和破碎 phase change multiphase flow model population balance crystallization number density aggregation and breakage
  • 相关文献

参考文献5

二级参考文献41

  • 1Sha Z, Palosaari S. Modeling and simulation of crystal size distribution in imperfectly mixed suspension crystallization. Journal of Chemical Engineering of Japan, 2002, 35 (11): 1188-1195
  • 2Wei H , Garside J. Application of CFD modeling to precipitation systems. Trans. IChemE, 1997, 75: 219-227
  • 3Marchisio D L, Barresi A A. CFD simulation of mixing and reaction: the relevance of the micro-mixing model. Chemical Engineering Science, 2003, 58:3579-3587
  • 4Jaworski Z, Nienow A W. CFD simulation of continuous precipitation of barium sulphate in a stirred tank. Chemical Engineering Journal, 2003, 91:167-174
  • 5Wei H, Zhou W, Garside J. Computational fluid dynamics modeling of the precipitation process in a semi-batch crystallizer. Ind. Eng. Res., 2001, 40:5525-5261
  • 6Wang L, Fox R O. Application of in situ adaptive tabulation to CFD simulation of nano-crystal formation by reactive precipitation. Chemical Engineering Science, 2003, 58:4387-4401
  • 7Vicum L, Ottinger S, Mazzotti M, Makowski L, Baldyga J. Multi-scale modeling of a reactive mixing process in a semibateh stirred tank. Chemical Engineering Science, 2004, 59:1767-1781
  • 8Yang G, Louhi-kultanen M, Kallas J. The CFD simulation of programmed batch cooling crystallization. Chemical Engineering Translations, 2002, 1:83-88
  • 9Hounslow M J, Ryall R L, Marshall V R. A discretized population balance for nucleation, growth, and aggregation. AIChEJournal, 1988, 34 (11): 1821-1832
  • 10Hounslow M J. A discretized population balance for continuous systems at steady state. AIChE Journal, 1990, 36 (1): 106-116

共引文献42

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部