期刊文献+

一类线性不确定时滞系统奇异摄动界 被引量:3

Singular Perturbation Bounds for a Class of Linear Systems With Time-Delay
在线阅读 下载PDF
导出
摘要 研究了一类常见的奇异摄动时滞不确定线性系统的鲁棒稳定性问题 ,获得了参数H∞ 范数有界摄动时 ,系统时滞有关稳定的充分条件 .给出了系统稳定时 ,时滞τ及奇异摄动参数ε的上界 . The robust stability problem of singularly perturbed uncertain linear systems with time delay is discussed. Delay dependent stability sufficient conditions for the systems with parameter perturbations bounded by H ∞ \%norm\% are derived. The upper bounds of ε and time delay are given. The convenience in using the conditions is demonstrated by an illustrative example.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2002年第6期707-712,共6页 JUSTC
基金 教育部"高等学校骨干教师资助计划"([2 0 0 0 ]6 5 4 )项目
关键词 线性不确定时滞系统 摄动界 奇异摄动 参数摄动 鲁棒稳定性 摄动矩阵 singular perturbation parameter perturbation linear system with time delay robust stability
  • 相关文献

参考文献5

  • 1Chan B S,and Lin C L. On the stability bounds singularly perturbed systems[J]. IEEE Trans. Automat. Contr.,1990,35(11):1 265-1 270.
  • 2Luse D W. Multivariable singularly perturbed feedback systems with time delay[J]. IEEE Trans. Automat. Contr.,1987,32(11):990-994.
  • 3Shao Z H, and Sawan M E. Robust stability of singularly perturbed systems[J]. Int. J Control, 1993, 58(6):1 469-1 476.
  • 4Shao Z,and Rowland J R . Stability of time-delay singularly perturbed systems[J]. IEE Proc.-Control Theory Appl., 1995, 142(2):111-113.
  • 5Su T J, Huang C G. Robust stability of delay dependence for linear uncertain systems[J]. IEEE Trans. Automat. Contr.,1992,37(10):1 656-1 659.

同被引文献38

  • 1吴敏 桂卫华.现代鲁棒控制[M].长沙:中南工业大学出版社,1998..
  • 2Xie L, Souza C E. Robust Ha control for linear systems with norm-bounded time-varying uncertainty [J]. IEEE Trans Automat Control,1992,37(8):1188-1191.
  • 3Khargonekar P P, Pertersen I R, Zhou K. Robust stabilization of uncertain systems: Quadratic stability and H∞ control theory[J]. IEEE Trans Automat Control, 1990,35(3) : 356-361.
  • 4Song S H, Kim J K. Ha control o[ discrete-time linear system with norm bounded uncertainties and time delay in state[J]. Automatica, 1998,34(1) : 137-139.
  • 5Trinh H, Aldeen M. Stability robustness bounds for linear systems with delay perturbations [J]. IEE Proc Control Theory Appl, 1995,142 (4) : 345-350.
  • 6Gu Y R, Wang S C, Li Q Q, et al. On delay-dependent stability and decay estimate for uncertain systems with time-varying delay [J]. Automatica, 1998, 34 ( 8 ):1035-1039.
  • 7Sowrder D D, Rogersk R O. An LQ-solution to a control problem associated with asolar thermal central receiver [J]. IEEE Trans.Automatic. Control, 1983,28(10): 971-977.
  • 8Shalom Y B. Tracking methods in a multitarget environment [J]. IEEE Trans. Automatic. Control, 1978,23(6): 618-628.
  • 9Boukas E K, YANG H. Optimal control of manufacturing flow and preventive maintenance [J]. IEEE Trans. Automatic. Control,1996,41 (6) :881-885.
  • 10Akella R, Kumar P R. Optimal control of production rate in a failure prone manufacturing system [J]. IEEE Trans. Automatic. Control, 1986,31 (2): 116-126.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部