期刊文献+

Face Expression Recognition on Uncertainty-Based Robust Sample Selection Strategy

在线阅读 下载PDF
导出
摘要 In the task of Facial Expression Recognition(FER),data uncertainty has been a critical factor affecting performance,typically arising from the ambiguity of facial expressions,low-quality images,and the subjectivity of annotators.Tracking the training history reveals that misclassified samples often exhibit high confidence and excessive uncertainty in the early stages of training.To address this issue,we propose an uncertainty-based robust sample selection strategy,which combines confidence error with RandAugment to improve image diversity,effectively reducing overfitting caused by uncertain samples during deep learning model training.To validate the effectiveness of the proposed method,extensive experiments were conducted on FER public benchmarks.The accuracy obtained were 89.08%on RAF-DB,63.12%on AffectNet,and 88.73%on FERPlus.
出处 《Journal of Electronic Research and Application》 2025年第2期211-215,共5页 电子研究与应用
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部