摘要
Highly efficient hydrogen evolution reaction(HER)electrocatalysts play a crucial part in generating green hydrogen.Herein,an electrochemical activation approach was applied to design 6.7 Rh-Ni_(2)P-800CV electrocatalysts in alkaline electrolytes.The results confirm that the generation of metal oxide sites through the electrochemical activation strategy can effectively improve the intrinsic activity of 6.7 Rh-Ni_(2)P-800CV.The density functional calculations further confirm that metal oxide active sites are favorable for H2O adsorption and activation and H*adsorption/desorption.The 6.7 Rh-Ni_(2)P-800CV possesses significantly enhanced HER performance with low overpotential(25 mV at 10 mA·cm^(2)),small Tafel(60 mV·dec^(-1))and robust stability in 1.0 M KOH,outperforming Pt/C and 6.7 Rh-Ni_(2)P counterparts.Meanwhile,6.7 Rh-Ni_(2)P-800CV can even operate at a large current density(550 mA·cm^(-2))up to 90 h with an overpotential of 320 mV,which meets the requirements of industrial water splitting.What's more,the overall watersplitting systems(6.7 Rh-Ni_(2)P-800CV‖6.7 Rh-Ni_(2)P-800CV)can be directly driven by the solar cell.This work highlights that electrochemical activation technology provides a robust avenue toward constructing efficient electrocatalysts for sustainable energy conversion.
基金
financially supported by the National Natural Science Foundation of China(Nos.22375005,22103054 and 22173066)
the Natural Science Research Project of Anhui Province Education Department(No.2022AH050323)
the Foundation of Key Laboratory of Advanced Technique&Preparation for Renewable Energy Materials,Ministry of Education,Yunnan Normal University(No.OF2022-05)
partly supported by Collaborative Innovation Center of Suzhou Nano Science&Technology
the 111 Project
Joint International Research Laboratory of Carbon-Based Functional Materials and Devices。