期刊文献+

基于LQR和UKF的软体机器人无模型轨迹跟踪控制

Model-free Trajectory Tracking Control of Soft Robots Based on LQR and UKF
在线阅读 下载PDF
导出
摘要 针对软体机器人精确建模和控制问题提出一种新颖的非线性估计和控制策略,用于控制二维气动软体机器人的动态性能。采用基于Koopman算子的数据驱动方法建立二维气动软体机器人的线性模型。利用无迹卡尔曼滤波器(UKF)进行传感器数据滤波和系统状态估计,同时利用线性二次型调节器(LQR)来实现轨迹跟踪的最优控制。仿真和实验比较结果一致表明,所提方法在轨迹跟踪性能方面优于另两种方法。 A novel nonlinear estimation and control strategy for controlling the dynamic performance of a 2D pneumatic soft robot was proposed to address the problems of accurate modelling and control of soft robots.Firstly,a linear model of the 2D pneumatic soft robot was established using a Koopman operator-based approach.Then,the UKF was proposed for sensor data filtering and system state estimation,while the LQR was used for optimal control of trajectory tracking.Simulation and experimental results consistently show that the strategy herein performs better than other two strategies in terms of trajectory tracking.
作者 关胜闯 柳宇钧 杨清昊 刘兆冰 GUAN Shengchuang;LIU Yujun;YANG Qinghao;LIU Zhaobing(School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan,430000;Department of Electrical and Electronic Engineering,University of Nottingham Ningbo China,Ningbo,Zhejiang,315000)
出处 《中国机械工程》 北大核心 2025年第3期570-575,583,共7页 China Mechanical Engineering
基金 国家大学生创新创业训练计划(024104970)。
关键词 软体机器人 Koopman算子 LQR控制 无迹卡尔曼滤波器 soft robot Koopman operator linear quadratic regulator(LQR)control unscented Kalman filter(UKF)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部