期刊文献+

相位与幅度的延迟误差对脉冲相干堆积的影响

Effect of Time Delay Error between Phase and Amplitude on Coherent Pulse Stacking
在线阅读 下载PDF
导出
摘要 文中搭建了基于GTI腔(Gires-Tournois interferometer)的三脉冲时域相干合成系统,实验研究了脉冲串相位预设与幅度波形的时间延迟误差对合成效果的影响。在光腔相位控制系统处于闭环的情况下,在1 ns范围内,以0.1 ns的精度改变脉冲相位预设电压的时钟,观察并分析相干堆积波形的演化过程与规律。结果表明,脉冲串相位与幅度波形的时钟精密同步能够较大地提升相干堆积波形的峰值,经过实验优化,三脉冲时域相干合成,主副脉冲比达到6.43∶1。另外,相位预设信号与幅度波形存在时间延迟的情况下,会使堆积波形发生畸变,主脉冲峰值相对同步的时刻有所下降。 A three-pulse time-domain coherent combining system based on the Gires-Tournois interferometer(GTI)cavity is constructed,and the effect of time delay error between phase presetting of pulse burst and ampli⁃tude waveform on the combination effect is experimentally studied.When the optical cavity phase control system is in closed-loop state,within the range of 1 ns,changing the clock of the pulse phase presetting voltage with an accu⁃racy of 0.1 ns,the evolution process and laws of the coherent stacking waveform is observed and analyzed.The re⁃sults show that the clock precise synchronization of the phase and amplitude waveforms of the pulse burst can sig⁃nificantly improve the peak value of the coherent stacked waveform.After experimental optimization,three pulse time-domain coherent combination is achieved,and the ratio of main and secondary pulses achieves 6.43∶1.In ad⁃dition,if there is a time delay between the phase presetting signal and the amplitude waveform,the stacked wave⁃form will be distorted,and the peak value of the main pulse will decrease relative to the synchronized time.
作者 刘必达 黄智蒙 周丹丹 夏汉定 张帆 彭志涛 LIU Bida;HUANG Zhimeng;ZHOU Dandan;XIA Handing;ZHANG Fan;PENG Zhitao(Laser Fusion Research Center,China Academy of Engineering Physics(CAEP),Mianyang,China)
出处 《光电技术应用》 2025年第1期12-16,共5页 Electro-Optic Technology Application
关键词 光纤激光 超短脉冲 脉冲相干堆积 脉冲相位 optical fiber laser ultra-short pulse coherent pulse stacking pulse phase
  • 相关文献

参考文献3

二级参考文献37

  • 1程勇,刘洋,许立新.激光相干合成技术研究新动向[J].红外与激光工程,2007,36(2):163-166. 被引量:24
  • 2J. Marmo, H. Injeyan, H. Komine et al.. Joint high power solid state laser program advancements at Northrop Grumman [C]. SPIE, 2009, 7195:719507.
  • 3T. M. Shay, J. T. Baker, A. D. Sanchez et al.. High power phase locking of a fiber amplifier array [C]. SPIE, 2009, 7195:71951M.
  • 4M. A. Vorontsov, T. Weyrauch, L. A. Beresnev et al..Adaptive array of phase locked fiber collimators: analysis and experimental demonstration [J]. IEEE J. Sel. Top. Quantum Electron. , 2009, 15(2):269-280.
  • 5P. Zhou, Z. Liu, X. Wang et al.. Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application[J]. IEEE J. Sel. Top. Quantum Electron. , 2009, 15(2):248-256.
  • 6L. Liu, M. A. Vorontsov, E. Polnau et al.. Adaptive phase locked fiber array with wavefront phase tip-tilt compensation using piezoelectric fiber positioners [C]. SPIE, 2007, 6708: 67080K.
  • 7L. Liu, M. A. Vorontsov, Phase-locking of tiled fiber array using SPGD feedback controller [C]. SPIE, 2005, 5895: 58950P.
  • 8M. A. Vorontsov. Adaptive photonics phase-locked elements (APPLE): system architecture and wavefront control concept [C]. SPIE, 2005, 5895:589501.
  • 9M. A. Vorontsov, G. W. Carhart, M. Cohen et al.. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration [J]. J. Opt. Soc. Am. A, 2000, 17:1440-1453.
  • 10Robert K. Tyson. Principle of Adaptive Optics [M]. San Diego: Academic Press, 1991

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部