期刊文献+

模块化热激活墙体性能优化与经济性分析

Optimization of efficiency and energy-saving analysis of modular thermo-activated walls
在线阅读 下载PDF
导出
摘要 针对制约热激活类墙体注热效率提升的低品位热量集中堆积问题,提出了一种内部设有特定孔道并用于填充热扩散性填料的模块化热激活墙体(modular thermo-activated wall,MTAW)。建立了MTAW动态传热模型,基于寒冷地区冬季气象条件对比分析了MTAW与2种参考墙体性能差异,探讨了填料腔倾角(θ值)、填料腔几何尺寸(a∶b值)和填料导热系数(λf值)对节能潜力与经济性的影响。结果表明:墙体内部增设填料腔并填充热扩散性材料对于总运行能耗和运行费用节省效果显著,相比2种参考墙体,当MTAW填料腔长轴横置且a∶b为1∶2时,总运行能耗分别减少2.60%和14.13%;相比2种参考墙体,MTAW总运行费用分别平均减少12.41%和50.04%;填料腔长轴倾向室内侧时,供热能耗随θ值增大呈现先减小后增加的趋势,各项性能指标在θL为60°时更优;a∶b值和λf值与总运行能耗和运行费用成反比,供热能耗和运行燃气费用降低率在λf为12λc时分别为3.03%和34.53%。 A modular thermo-activated wall(MTAW)with specialized internal cavities for thermal diffusivity fillers was proposed to solve the problem of low-grade heat accumulation,which restricts the heat injection efficiency of thermo-activated walls.A dynamic heat transfer model of the MTAW was established.,and its performance was compared with two reference walls under typical winter conditions in a cold climate zone.The study examined the effects of the filler cavity inclination angle(θ),cavity geometry ratio(a∶b),and thermal conductivity of the filling material(λf)on energy-saving potential and economic performance.Results show that incorporating filler cavities and thermal diffusing materials significantly reduces total operational energy consumption and costs.Compared with the reference walls,when the the MTAW filler cavity’s long axis is oriented transversely with an a∶b ratio of 1∶2,the total operational energy consumption decreases by 2.60%and 14.13%,respectively.Compared with the reference walls,operational costs are reduced by 12.41%and 50.04%,respectively.When the long axis of the filler cavity is inclined toward the room side,heating energy consumption initially decreases and then increases asθrises,with optimal performance observed atθL=60°.Additionally,a∶b andλf are inversely proportional to both total operational energy consumption and costs.For example,whenλf is 12λc,heating energy consumption and gas operating costs are reduced by up to 3.03%and 34.53%,respectively.
作者 陈萨如拉 陈天航 杨洋 CHEN Sarula;CHEN Tianhang;YANG Yang(School of Architecture and Urban Planning,Anhui Jianzhu University,Hefei 230601,P.R.China;College of Architecture and Art,Hefei University of Technology,Hefei 230601,P.R.China)
出处 《重庆大学学报》 北大核心 2025年第2期74-85,共12页 Journal of Chongqing University
基金 国家自然科学基金(52208103) 安徽省高校优秀科研创新团队(2022AH010021)。
关键词 热激活建筑系统 模块化构造 模拟仿真 能源效率 经济性分析 thermo-activated building system modular construction simulation energy efficiency economic analysis
  • 相关文献

参考文献6

二级参考文献23

  • 1崔浩,朱红慧.夏热冬冷地区住宅建筑外墙保温隔热技术的应用及相关材料的比选[J].建筑施工,2002,24(4):312-313. 被引量:3
  • 2徐小林,李百战.室内热环境对人体热舒适的影响[J].重庆大学学报(自然科学版),2005,28(4):102-105. 被引量:54
  • 3建设部标准定额研究所.建筑外墙外保温技术导则[M].北京:中国建材工业出版社,2005.
  • 4齐晓琳,桑国臣,杨柳.外墙外保温体系性能优势分析[C].2007全国建筑环境与建筑节能学术会议论文.成都:西南交大出版社:142-146.
  • 5YU J H, YANG C Z, TIAN L W. Low-energy envelope design of residential building in hot summer and cold winter zone in China [J]. Energy and Buildings,2008,40 (8) :1536-1546.
  • 6LOLLINI, BAROZZI, MERONI, et al. Optimization of opaque components of the building envelope Energy, economic and environmental issues [J]. Building and environment,2006, 41 (8) :1001-1013.
  • 7SAMI AA1-SANEA, ZEDAN M F, SALEH AAl- AJLAN. Effect of electricity tariff on the optimum insulation-thickness in building walls as determined by a dynamic heat-transfer model[J]. Applied Energy, 2005, 82 (4): 313-330.
  • 8ANANI A, JIBRIL Z. Role of thermal insulation in passive designs for buildings [J]. Solar and Wind Technology, 1988,5 : 303-313.
  • 9BOJIC M, YIK F, SAT P. Influence of thermal insulation position in building envelope on the space cooling of high-rise residential buildings in Hong Kong [J]. Energy and Buildings,2001, 33 (6)569-581.
  • 10BOGDAN M, HOERTER J, MOORE J R, et al. Meeting the insulation requirements of the building envelope with polyurethane and polyisocyanurate foam [J]. Journal of Cetlular Plastics,2005, 41 (1) :41-55.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部