期刊文献+

结合双向注意力机制的网络欺凌检测

Combining with bidirectional attention mechanism for cyberbullying detection
在线阅读 下载PDF
导出
摘要 针对网络欺凌文本内容嘈杂、文本特征交互不足的问题,提出一种结合双向注意力机制的网络欺凌检测模型。多尺度门控扩张因果卷积(MGDC)提取文本不同感受视野下的局部特征;双向门控循环单元(BiGRU)提取全局上下文语义特征;利用双向注意力机制学习全局上下文语义特征和局部特征之间的交互作用,弥补各自特征之间的不足。通过胶囊网络进行深层次的特征提取。通过实验验证了该方法在网络欺凌文本检测中的准确性和有效性。 To address the problem of noisy text content and insufficient interaction of text features for cyberbullying,a cyberbullying detection model was proposed combining with bidirectional attention mechanism.Multi-scale gated dilated causal convolution(MGDC)was used to extract local features under different sensory horizons of the text.The bi-directional gated recurrent unit(BiGRU)was used to extract global contextual semantic features.The bidirectional attention mechanism was used to learn the interactions between the global contextual semantic features and the local features,to make up for the deficiencies of the respective features.The deep feature extraction was performed by the capsule network.The accuracy and effectiveness of the method in cyberbullying text detection are demonstrated through experiments.
作者 周杭霞 厉贤斌 崔晨 许瑞旭 ZHOU Hang-xia;LI Xian-bin;CUI Chen;XU Rui-xu(School of Information Engineering,China Jiliang University,Hangzhou 310018,China;Big Data and Network Security Research Institute,Zhejiang Police College,Hangzhou 310053,China;Software Development Department,Hanrun Ruihe(Zhejiang)Technology Co,Hangzhou 311100,China)
出处 《计算机工程与设计》 北大核心 2025年第2期523-529,共7页 Computer Engineering and Design
基金 公安部重点实验室开放课题基金项目(2021DSJSYS004) 浙江省公益技术应用研究基金项目(LGG22E070003)。
关键词 网络欺凌 社交媒体 多尺度门控扩张因果卷积 双向注意力机制 胶囊网络 双向门控循环单元 特征提取 cyberbullying social media multiscale gated dilated causal convolution bidirectional attention mechanism capsule network bidirectional gate recurrent unit feature extraction
  • 相关文献

参考文献3

二级参考文献9

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部