摘要
探讨并研究f(z)的导数、位移算子与差分算子之间的关系。利用Nevanlinna理论更进一步地讨论了复微分-差分方程f'(z)=Δ_(c)f(z).此外还得到了整函数的位移算子与其一阶差分和二阶差分CM分担一个值的唯一性。
The relationship among the derivative,shift operator and difference operator of f(z)is discussed and studied.The complex differential-difference equation f'(z)=Δ_(c)f(z)is further discussed by using Nevan⁃linna theory.In addition,we obtain the uniqueness of shift operators of entire function sharing one value CM with its first-order and second-order difference operators.
作者
张佳欣
陈省江
ZHANG Jia-xin;CHEN Sheng-jiang(School of Mathematics and Statistics,Fujian Normal University,Fuzhou,Fujian 350117,China;College of Mathematics and Physics,Ningde Normal University,Ningde,Fujian 352100,China)
出处
《宁德师范学院学报(自然科学版)》
2024年第4期343-349,共7页
Journal of Ningde Normal University(Natural Science)
基金
国家自然科学基金项目(12001211)
宁德师范学院科研创新团队(2019T01)
福建省自然科学基金项目(2022J011212)。
关键词
整函数
导数
差分
分担值
entire function
derivative
difference
share value