期刊文献+

关于f'(z)=Δ_(c)f(z)的分担值性质

On the shared-value properties of f'(z)=Δ_(c)f(z)
在线阅读 下载PDF
导出
摘要 探讨并研究f(z)的导数、位移算子与差分算子之间的关系。利用Nevanlinna理论更进一步地讨论了复微分-差分方程f'(z)=Δ_(c)f(z).此外还得到了整函数的位移算子与其一阶差分和二阶差分CM分担一个值的唯一性。 The relationship among the derivative,shift operator and difference operator of f(z)is discussed and studied.The complex differential-difference equation f'(z)=Δ_(c)f(z)is further discussed by using Nevan⁃linna theory.In addition,we obtain the uniqueness of shift operators of entire function sharing one value CM with its first-order and second-order difference operators.
作者 张佳欣 陈省江 ZHANG Jia-xin;CHEN Sheng-jiang(School of Mathematics and Statistics,Fujian Normal University,Fuzhou,Fujian 350117,China;College of Mathematics and Physics,Ningde Normal University,Ningde,Fujian 352100,China)
出处 《宁德师范学院学报(自然科学版)》 2024年第4期343-349,共7页 Journal of Ningde Normal University(Natural Science)
基金 国家自然科学基金项目(12001211) 宁德师范学院科研创新团队(2019T01) 福建省自然科学基金项目(2022J011212)。
关键词 整函数 导数 差分 分担值 entire function derivative difference share value
  • 相关文献

参考文献1

二级参考文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部