摘要
内分泌干扰物由于化学结构稳定很难从废水中去除,其在水环境中持续的释放仍然是水处理中备受关注的难题。文章以藻类为原料合成的铜掺杂类石墨烯催化剂(Cu@IANC)构建了以Cu为中心的富电子区域和以C为中心的贫电子区域,在含有双酚A(BPA)和10 mM H_(2)O_(2)的反应水溶液中,Cu@IANC对BPA的降解呈现出优异的活性和稳定性。反应水溶液中,BPA通过π-π与氢键作用,在Cu@IANC表面的贫电子区域络合,同时H_(2)O_(2)在Cu@IANC表面的富电子区域吸附,由此,在Cu@IANC表面形成多点吸附模式。在这种吸附模式下,BPA受Cu-π静电力的影响电子离域,并被H_(2)O_(2)捕获产生羟基自由基(·OH),生成的·OH游离在水溶液中攻击BPA及其中间体。H_(2)O_(2)与Cu-π静电力在生物炭基类芬顿催化剂上的协同作用是有效降解内分泌干扰物的低成本解决方案。
Endocrine disruptors are difficult to remove from wastewater due to their stable chemical structure,and their continuous release in the aqueous environment remains a challenge of great concern in water treatment.In this paper,a copper-doped graphene-like catalyst(Cu@IANC)synthesized from algae was constructed with Cu-centered electron-rich regions and C-centered electron-poor regions.In the reactive aqueous solution containing bisphenol A(BPA)and 10 mM H_(2)O_(2),the degradation of BPA by Cu@IANC exhibited excellent activity and stability.In the reactive aqueous solution,BPA was complexed in the electron-poor region on the Cu@IANC surface byπ-πand hydrogen bonding,while H_(2)O_(2)was adsorbed in the electron-rich region on the Cu@IANC surface,resulting in the formation of a multipoint adsorption pattern on the Cu@IANC surface.In this adsorption mode,BPA was electronically delocalized by the Cu-πelectrostatic force and captured by H_(2)O_(2)to generate hydroxyl radicals(·OH).The generated·OH was free in aqueous solution to attack BPA and its intermediates.The synergistic interaction of H_(2)O_(2)and Cu-πelectrostatic forces over biochar-based Fenton-like catalysts is a low-cost option for the effective degradation of environmental endocrine.
作者
彭丹丹
廖威翔
胡春
PENG Dan-dan;LIAO Wei-xiang;HU Chun(Key Laboratory for Water Quality and Conservation of the Pearl River Delta,Ministry of Education,Institute of Environmental Research at Greater Bay,Guangzhou University,Guangzhou 510006,China)
出处
《广州大学学报(自然科学版)》
2024年第6期95-101,共7页
Journal of Guangzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(52350005,51838005)
广东省“珠江人才引进计划”引进创新创业团队资助项目(2019ZT08L387)。
关键词
内分泌干扰物
水处理技术
双反应中心
生物炭基催化剂
Cu-π静电力
endocrine disruptors
water treatment technology
dual-reaction center
biochar-based catalyst
Cu-πelectrostatic forces