摘要
Natural gas hydrates are widely distributed in marine and permafrost environments.As a novel energy resource,accurately describing reservoir characteristics and assessing energy potential is crucial for its commercial development.Resistivity logging serves as a valuable approach for achieving these goals.Nevertheless,due to inadequate comprehension of the electrical conductivity mechanism in hydrate-bearing sediments,existing data processing models still encounter certain challenges.This study conducts both core-scale and pore-scale simulation experiments to examine the relationship between resistivity variations and the distribution of gas hydrate porosity.The results indicate that the characteristics of resistivity variation is associated with the gas hydrate formation process,and the gas hydrate saturation index,denoted as‘n',varies between 0 and 3 depending on different gas hydrate distribution patterns.As the saturation increases,gas hydrate distribution in pore spaces transitions from floating to contacting and cementing patterns.It is proposed that the aqueous pore tortuosity can be utilized to correct the saturation index‘n'in Archie's equation.Based on the analysis of experimental data,a correction method for Archie's equation is suggested,and its effectiveness in controlling relative error has been validated.
基金
financially supported by the National Natural Science Foundation of China(No.42376067)
the Natural Science Foundation of Shandong Province(No.ZR202011030013)
the Laoshan Laboratory(No.LSKJ202203506)
the China Geological Survey Program(No.DD20230064)。