摘要
Solar-driven interface evaporation with high solar-to-steam conversion efficiency has shown great potential in seawater desalination.However,due to the influence of latent heat and condensation efficiency,the water yield from solar-driven interface evaporation remains insufficient,posing a significant challenge that requires resolution.In this work,we designed a dual-mode high-flux seawater desalination device that combines solar-driven interface evaporation and capacitive desalination.By utilizing coupled desalination materials exhibiting both photothermal conversion and capacitance activity,the device demonstrated photothermal evaporation rates of 1.41 and 0.97 kg m^(-2)h^(-1)for condensate water yield under one-sun irradiation.Additionally,the device exhibited a salt adsorption capacity of up to48 mg g^(-1)and a salt adsorption rate of 2.1 mg g^(-1)min-1.In addition,the salt adsorption capacity increased by approximately 32%under one-sun irradiation.Furthermore,photo-enhanced capacitive desalination performance was explored through numerical simulations and theoretical calculations.Theoretical calculations and characterizations confirmed that the defect energy levels formed by the introduction of sulfur vacancies can effectively widen the light absorption range,improve photothermal conversion performance,and stimulate more photoelectrons to participate in capacitive desalination.Concurrently,the electron distribution state of molybdenum disulfide with sulfur vacancies and surface defect sites contributes to ion/electron transport at the solid-liquid interface.This work provides a novel pathway for integrating solar vapor generation with other low-energy desalination technologies.
基金
financially supported by research grants from the Natural Science Foundation of China(52173235,22265010,12204071,62074022)
National Key Research and Development Program of China(2022YFB3803300)
Youth Talent Support Program of Chongqing(CQYC2021059206)
Hainan Province Science and Technology Special Fund(ZDYF2024SHFZ038)
Science and Technology Innovation and Improving Project of Army Medical University(No.2021XJS24)。