期刊文献+

基于改进YOLOv8算法的在线听课行为识别模型研究

Research on Online Listening Behavior Recognition Model Based on Improved YOLOv8 Algorithm
在线阅读 下载PDF
导出
摘要 目前目标检测技术日趋成熟,但是针对在线听课行为的识别仍存在挑战。针对在线课堂人为监管力度不足、目标检测模型复杂度较高所导致的在线课堂行为识别不精准、模型计算量较高等问题,提出一种基于改进的YOLOv8在线听课行为检测与识别方法。首先在YOLOv8n的基础上添加BiFPN双向特征金字塔网络来进行特征融合,以增加特征提取的能力,提高模型识别准确度;其次在Head端采用C3Ghost模块替代C2f模块,以大幅减少模型计算量。实验结果表明,提出的YOLOv8n-BiFPN-C3Ghost模型在线上听课行为数据集上的mAP@0.5和mAP@0.5∶0.95指标分别为98.6%和92.6%,相比其他课堂行为识别模型在精度上最高提升了4.2%和5.7%,计算量为6.6 GFLOPS,比原模型降低了19.5%。YOLOv8n-BiFPN-C3Ghost模型能以更低的运算成本精确地实现在线听课行为的检测和识别,可以实现对学生在线课堂学习情况的动态、科学识别。 Target detection technology is advancing,but recognizing online listening behavior remains a challenge.Inaccurate identification of online classroom conduct and high model computation owing to limited human supervision and complex target detection models pose problems.To address this,we employed an upgraded YOLOv8-based method to detect and identify online listening behaviors.This approach incorporates a Bidirectional Feature Pyramid Network(BiFPN)to fuse features based on YOLOv8n,thereby enhancing feature extraction and model recognition accuracy.Second,the C3Ghost module is selected over the C2f module on the Head side to minimize the computational burden significantly.The study demonstrates that the YOLOv8n-BiFPN-C3Ghost model achieved an mAP@0.5 score of 98.6%and an mAP@0.5∶0.95 score of 92.6%on an online listening behavior dataset.The proposed model enhanced the accuracy by 4.2%and 5.7%,respectively,compared with other classroom behavior recognition models.Moreover,the required computation amount is only 6.6 GFLOPS,which is 19.5%less than that of the original model.The YOLOv8n-BiFPN-C3Ghost model is capable of detecting and recognizing online listening behavior with greater speed and accuracy while utilizing lower computing costs.This will ultimately enable the dynamic and scientific recognition of online classroom learning among students.
作者 李猛坤 袁晨 王琪 赵冲 陈景轩 刘立峰 LI Mengkun;YUAN Chen;WANG Qi;ZHAO Chong;CHEN Jingxuan;LIU Lifeng(School of Management,Capital Normal University,Beijing 100089,China;College of Teacher Education,Capital Normal University,Beijing 100037,China;School of Environmental and Chemical Engineering,Shanghai University,Shanghai 200444,China)
出处 《计算机工程》 北大核心 2025年第1期287-294,共8页 Computer Engineering
基金 中国高校产学研创新基金-新一代信息技术创新项目(2021RYC06006)。
关键词 目标检测 在线课堂 听课行为识别 性能优化 特征融合 target detection online classroom listening behavior recognition performance optimization feature fusion
  • 相关文献

参考文献15

二级参考文献103

  • 1顾小清,王炜.支持教师专业发展的课堂分析技术新探索[J].中国电化教育,2004(7):18-21. 被引量:348
  • 2张建琼.教学行为研究的教学论意义[J].教育理论与实践,2004,24(9):50-53. 被引量:23
  • 3李松林.课堂教学行为分析引论[J].教育理论与实践,2005,25(4):48-51. 被引量:51
  • 4曾祥春,杨心德,钟福明.变式练习的心理机制与教学设计[J].教育探索,2006(8):79-81. 被引量:16
  • 5Terence J CROOKS.The Impact of Classroom Evaluation Practices on Students[J].Review of Educational Research,1988,58(4):438-481.
  • 6Frans J PRINS,Dominique MA SLUIJSMANS,Paul A KIRSCHNER, et al.Formative Peer Assessment in a Cscl Environment: a Case Study[J]. Assessment & Evaluation in Higher Education,2005,30(4):417-444.
  • 7Jingyan LU,Nancy LAW.Online Peer Assessment: Effects of Cognitive and Affeetive Feedback[J].Instructional Science,2012,40(2):257-275.
  • 8Ying - Chih CHEN,Chin-Chung TSAI.An Educational Research Course Facilitated by Online Peer Assessment[J].Innovations in Education and Teaching International,2009,46(1):105-117.
  • 9Marjo VAN ZUNDERT,Dominique SLUIJSMANS,.Ieroen VAN MER- RIeNBOER.Effective Peer Assessment Processes: Research Findings and Future Direetions[J].Learning and Instruction201020(4):270-279.
  • 10Nancy FALCHIKOV,Judy GOLDFINCH.Student Peer Assessment in Higher Education: a Meta-analysis Comparing Peer and Teacher Marks[J].Review of Educational Research,2000,70(3):287-322.

共引文献242

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部