摘要
为了研究TiZrNbHf RHEA在动态冲击下的力学特性,使用20 mm口径的一级轻气炮试验平台进行非对称平板撞击试验;通过扫描电子显微镜对回收试样进行分析,从微观角度分析其层裂机制。结果表明,在塑性波冲击峰值压力范围为0~20 GPa时,TiZrNbHf RHEA的层裂强度范围为1.81~2.41 GPa,RHEA的层裂强度明显低于3d族元素HEA;TiZrNbHf RHEA的Hugoniot弹性极限随着冲击速度增大而增大,从3.05 GPa增大至3.57 GPa,其加速度也随冲击速度增大而增大;试验得到的Hugoniot状态方程显示出线性关系,通过冷能混合法得到的状态方程与试验数据相比较低,但在实验范围内可以用来预测材料性能。对回收试样的金相分析表明,SE和BSE图显示孔洞相连形成裂纹,其损伤区域存在大量的韧窝和少量的河流状花样,表明其损伤模式为韧性断裂为主的混合断裂模式。
In order to study the dynamic mechanical properties of TiZrNbHf RHEA under dynamic impact,a flat plate impact experiment was carried out by using a 20 mm caliber first-stage light gas gun,and the recovered samples were analyzed by scanning electron microscopy on their delamination mechanism from a microscopic perspective.The results show that the delamination strengths of TiZrNbHf RHEA ranges from 1.81 to 2.41 GPa when the peak pressure of plastic wave pressure ranges from 0 to 20 GPa.The delamination strength of TiZrNbHf RHEA is lower than that of 3d-HEA.The Hugoniot elastic limit ranges from 3.05 GPa to 3.57 GPa,increases with the increasing of impacting speed,and the reacceleration increases with the increasing of impacting speed.The Hugoniot equation of state obtained by the experiment shows a linear relationship.The state equation obtained by the cold energy mixing method is lower than the test data,but it can be used to predict the materials′properties over the experimental range.The metallographic analysis of the recovered samples shows that the SE and BSE image maps show that the holes are connected to form cracks,there are a large number of dimple and a small number of river-like patterns in the damage area,indicating that the damage mode is a mixed fracture mode dominated by ductile fracture.
作者
张思源
任柯融
徐文涛
陈荣
陈进
ZHANG Si-yuan;REN Ke-rong;XU Wen-tao;CHEN Rong;CHEN Jin(School of Mechanics and Safety Engineering,Zhengzhou University,Zhengzhou 450000,China;College of Science,National University of Defense Technology,Changsha 410073,China;Air Force Engineering University,Aviation Maintenance NCO Academy,Xinyang Henan 464000,China;Xi′an Modern Chemistry Research Institute,Xi′an 710065,China)
出处
《火炸药学报》
CSCD
北大核心
2024年第12期1104-1113,I0002,共11页
Chinese Journal of Explosives & Propellants
基金
国家自然科学基金(No.12072369)
湖南省杰出青年基金项目(No.2022JJ10058)。