期刊文献+

电纺丝技术制备聚乙二醇/聚乙烯吡咯烷酮相变纳米纤维及其性能 被引量:5

Performance of Polyethylene Glycol/ Polyvinylpyrrolidone Phase Change Ultrafine Nanofibers Prepared by Electrospinning
在线阅读 下载PDF
导出
摘要 采用静电纺丝技术以聚乙烯吡咯烷酮(PVP)为载体基质,聚乙二醇(PEG)为相变材料合成了一种相变纳米纤维。考察了溶液浓度、纺丝电压、接收距离等对静电纺丝效果的影响。对于不同PEG相对分子质量,以及混合溶液中不同的PEG含量对于纳米纤维形态及直径的影响进行了研究,研究结果显示,相变纳米纤维呈现圆柱形状而且表面比较光滑,纳米纤维的直径在370 nm^620 nm,而且,纳米纤维的直径随着PEG含量和PEG相对分子质量的增加呈现增大的趋势。同时,用差示扫描量热法测试了相变纳米纤维的相变温度,其值与PEG含量有关。 Ultrafine fibers of polyethylene glycol/ polyvinylpyrrolidone(PEG/PVP)composite in which PEG acts as model phase change material(PCM)and PVP acts as supporting material, were successfully prepared via electrospinning as phase change materials. The effectof electro-spinning factorsincluding the concentration of spinning solution,the collect distance and the spinning voltage on the morphology of the fibers was studied. The effect of PEG content and its molecularweighton morphology of the PEG/PVP composite fiberswas studied. The morphology observation from the composite fibers reveals that the fibers are cylindrical and have smooth external surface, and with increase of PEG content and its molecular weight, the average diameters of PEG/PVP phase change fibers increase from 370 nm to 620 nm. The phase change properties of composite fibers were tested by DSC. The result indicates that Tmis affected by different ratios of PEG component.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2014年第4期176-178,185,共4页 Polymer Materials Science & Engineering
基金 北京市教育委员会科技发展计划面上项目资助 北京市属高等学校高层次人才引进与培养计划项目-青年拔尖人才项目
关键词 静电纺丝 聚乙二醇 聚乙烯吡咯烷酮 相变材料 纳米纤维 electro-spinning polyethylene glycol polyvinylpyrrolidone phase change material nano-fiber
  • 相关文献

参考文献7

二级参考文献24

  • 1张淑敏,刘太奇.纳米尼龙丝的制备及性能[J].高分子材料科学与工程,2005,21(5):289-292. 被引量:12
  • 2姚永毅,朱谱新,叶海,钮安建,高绪珊,吴大诚.静电纺丝法和气流静电纺丝法制备聚砜纳米纤维[J].高分子学报,2005,15(5):687-692. 被引量:22
  • 3王洪涛,刘太奇.新型纳米/亚微米纤维态催化剂的制备及表征[J].高分子材料科学与工程,2006,22(6):229-232. 被引量:8
  • 4ZHENG M H, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J ]. Composites Science and Technology, 2003, 63: 2223-2253.
  • 5JUN K, DAVID C, LID H Q, et al. Polymeric nanowire architecture[J]. Craighead. J. Mater. Chem., 2004, 14(10): 1503-1505.
  • 6DERSCH R, LIU T Q, SCHAPER A K, et al. Electrospun nanofibers: Internal structure and intrinsic orientation[J]. J. Polym. Sci. Part A :Polym. Chem., 2003, 41: 545-553.
  • 7SHU Z, WOO S S, JOOYOUN K. Design of ultra-fine nonwovens via electrospinning of nylon 6: spinning parameters and filtration efficiency[J]. Materials & Design, 2009, 30(9): 3659-3666.
  • 8AUSSAWASATHIEN D, TEERAWATTANANON C, VONGACHARIYA A. Separation of micron to sub-miemnpartieles from water: electrospun nylon-6 nanofibrous membranes as pre-filters [J]. J. Membr. Sei., 2008, 315(1-2). 11-19.
  • 9刘太奇,张淑敏.一种夹心式纳米/亚微米电纺丝基过滤材料的制备方法:中国,200410029988.0[P].2005-01-12.
  • 10ZONG X H, KIM K, CHU B, et al. Structure and process relationship of electrospun bioabsorbable nanofiber membranes [J ]. Polymer, 2002, 43(16): 4403-4412.

共引文献23

同被引文献24

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部