期刊文献+

Upper crustal anisotropy from local shear-wave splitting and crust-mantle coupling of Yunnan,SE margin of Tibetan Plateau 被引量:4

Upper crustal anisotropy from local shear-wave splitting and crust-mantle coupling of Yunnan,SE margin of Tibetan Plateau
在线阅读 下载PDF
导出
摘要 The upper crustal anisotropy of Yunnan area, SE margin of Tibetan Plateau, is investigated by measuring the shear wave splitting of local earthquakes. The mean value of the measured delay times is 0.054 s and far less than that from Pms splitting analysis, indicating that the crustal anisotropy is contributed mostly from mid-lower crust. The fast polarization directions are mostly sub-parallel to the maximum horizontal compression directions while the stations near fault zones show fault-parallel fast polarization directions, suggesting both stress and geological structure contribute to the upper crust anisotropy.Comparing fast polarization directions from shear wave splitting of local earthquakes and Pms, large angle differences are shown at most stations, implying different anisotropy properties between upper and mid-lower crust. However, in southwestern Yunnan, the fast polarization directions of Pms and Swave splitting are nearly parallel, and the stress and surface strain rate directions show strong correlation, which may indicate that the surface and deep crust deformations can be explained by the same mechanism and the surface deformation can represent the deformation of the whole crust. Therefore,the high correlation between surface strain and mantle deformation in this area suggests the mechanical coupling between crust and mantle in southwestern Yunnan. In the rest region of Yunnan, the crustmantle coupling mechanisms are supported by the lack of significant crustal anisotropy with Ne S fast polarization directions from Pms splitting. Therefore, we conclude that the crust and upper mantle are coupled in Yunnan, SE margin of Tibetan Plateau. The upper crustal anisotropy of Yunnan area, SE margin of Tibetan Plateau, is investigated by measuring the shear wave splitting of local earthquakes. The mean value of the measured delay times is 0.054 s and far less than that from Pms splitting analysis, indicating that the crustal anisotropy is contributed mostly from mid-lower crust. The fast polarization directions are mostly sub-parallel to the maximum horizontal compression directions while the stations near fault zones show fault-parallel fast polarization directions, suggesting both stress and geological structure contribute to the upper crust anisotropy.Comparing fast polarization directions from shear wave splitting of local earthquakes and Pms, large angle differences are shown at most stations, implying different anisotropy properties between upper and mid-lower crust. However, in southwestern Yunnan, the fast polarization directions of Pms and Swave splitting are nearly parallel, and the stress and surface strain rate directions show strong correlation, which may indicate that the surface and deep crust deformations can be explained by the same mechanism and the surface deformation can represent the deformation of the whole crust. Therefore,the high correlation between surface strain and mantle deformation in this area suggests the mechanical coupling between crust and mantle in southwestern Yunnan. In the rest region of Yunnan, the crustmantle coupling mechanisms are supported by the lack of significant crustal anisotropy with Ne S fast polarization directions from Pms splitting. Therefore, we conclude that the crust and upper mantle are coupled in Yunnan, SE margin of Tibetan Plateau.
出处 《Geodesy and Geodynamics》 2018年第4期302-311,共10页 大地测量与地球动力学(英文版)
基金 supported by the National 973 Project of China (No.2013CB733303) the open fund of Key Laboratory of Geospace Environment and Geodesy,Ministry of Education (No.15-02-07)
关键词 Shear wave splitting Stress Strain rate Yunnan area Crust-mantle coupling Shear wave splitting Stress Strain rate Yunnan area Crust-mantle coupling
  • 相关文献

参考文献4

二级参考文献54

共引文献121

同被引文献103

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部