摘要
环境因素变化可能会掩盖损伤引起的结构动力特性变化,导致传统基于振动的损伤识别方法失效。为解决这一问题,该文提出了一种将变分模态分解(variational modedecomposition,VMD)、主成分分析(principal component analysis,PCA)和高斯过程回归(Gaussian process regression,GPR)相融合的结构损伤识别方法。首先,利用VMD算法对频率数据进行预处理,得到分离季节性环境模式后的第1本征模态数据(IMF,);其次,采用PCA方法对IMF,数据进行分析,计算PCA残差的欧式距离;然后,以IMFi数据和相对应的PCA残差欧式距离为输人和输出,采用GPR模型学习输人-输出之间的计算规则;最后,利用训练好的GPR模型来预测剩余部分IMF,数据的PCA欧式距离,计算预测值与真实值之间的预测残差,并采用统计控制图进行损伤预警。实验室木桥和Z24桥的监测数据验证了该方法的有效性。
The influence of the changing environments on dynamic feature may completely mask the dynamic feature changes caused by damage,making vibration-based methods challenging to effectively detect structural damage.To address this issue,this paper proposes a structural damage detection method based on the variational mode decomposition(VMD),the principal component analysis(PCA),and the Gaussian process regression(GPR).First,the VMD algorithm is used to preprocess the frequency signal to obtain the IMF,after separating the seasonal environmental patterns.Secondly,the PCA method is used to analyze the IMF,and calculate the Euclidean distance of the PCA residual.Then,the IMF,signal and the corresponding PCA residual Euclidean distance are used as input and output,and the GPR model is used to learn the calculation rules between input and output.Finally,the trained GPR model is used to predict the PCA Euclidean distance of the remaining IMFi,the prediction residual between the predicted value and the true value is calculated,and statistical control chart is used for damage warning.Monitoring data from a laboratory wooden bridge and the Z24 bridge were used to verify the effectiveness of the method.
作者
黄杰忠
元思杰
李东升
HUANG Jieahong;YUAN Sijie;LI Dongsheng(Department of Civil and Intelligent Construction Engineering,Shantou University,Shantou 515063,China;Guangdong Engineering Center for Structure Safety and Health Monitoring,MOE Key Laboratory of Intelligent Manufacturing Technology,Shantou University,Shantou 515063,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2024年第24期332-342,共11页
Journal of Vibration and Shock
基金
国家自然科学基金资助项目(52308318,52078284)
广东省自然科学基金项目(2023A1515012230,2021A1515011770)
广东省科技计划项目(STKJ2023043)
汕头大学科研启动基金项目(NTF21019,NTF18012)
安徽省桥梁结构数据诊断与智慧运维国际联合研究中心开放项目(2022AHGHYB01)
桥梁结构健康与安全国家重点实验室开放课题(BHSKL20-10-KF)。