摘要
随着现代电气设备的飞速发展,对具有较高电气强度和力学性能的纳米复合薄膜提出了更高的要求。为此,本文采用3-氨丙基三羟基硅烷修饰氮化硼纳米片(BNN)得到改性BNN(aBNN),然后与芳纶纳米纤维(ANF)混合,通过高温热压法制备了致密的ANF/aBNN纳米复合薄膜,并对其热稳定性、力学性能和电绝缘性能进行了表征。结果表明:随着aBNN含量的增加,纳米复合膜的热失重率明显减小。当aBNN质量分数为10%时,ANF/10%aBNN纳米复合薄膜的抗拉强度、断裂伸长率和韧性均达到最大,分别为235 MPa、14.0%和32.4 MPa·m^(1/2),比ANF/10%BNN分别提高了25%、9.4%和75.1%;电气强度高达154 kV/mm,比纯ANF和ANF/10%BNN分别提高了约15%和11.6%;体积电阻率(测试温度为60℃)达到最大值7.94×10^(17)Ω·cm,比纯ANF和ANF/10%BNN分别提高了893%和694%。
With the rapid development of modern electrical equipment,higher requirements have been put forward for nanocomposite films with higher dielectric strength and mechanical properties.Therefore,we modified boron nitride nanosheets(BNN)with 3-aminopropyltrihydroxysilane to obtain modified BNN(aBNN),and then mixed aBNN with aramid nanofiber(ANF)to prepare dense ANF/aBNN nanocomposite films by high-temperature hot-pressing method.The thermal stability,mechanical properties and electrical insulating properties of films were characterized.The results show that with the increase of aBNN content,the thermal weight loss rate of the nanocomposite film decreases significantly.When the mass fraction of aBNN is 10%,the tensile strength,elongation at break,and toughness of the ANF/10%aBNN nanocomposite film reach the maximum value,which is 235 MPa,14.0%,and 32.4 MPa·m^(1/2),respectively,it is 25%,9.4%,and 75.1%higher than that of ANF/10%BNN,respectively.The electrical strength of ANF/10%aBNN is as high as 154 kV/mm,which is about 15%and 11.6%higher than that of pure ANF and ANF/10%BNN,respectively.And the volume resistivity reaches the maximum value of 7.94×10^(17)Ω·cm(tested at 60℃),which is 893%and 694%higher than that of pure ANF and ANF/10%BNN,respectively.
作者
顾臻
卢宇
周磊
张静月
李芸
GU Zhen;LU Yu;ZHOU Lei;ZHANG Jingyue;LI Yun(State Grid Shanghai Electric Power Company,Shanghai 200051,China;Shenzhen Clou Electronics Co.,Ltd.,Shenzhen 518132,China)
出处
《绝缘材料》
CAS
北大核心
2024年第12期20-26,共7页
Insulating Materials
基金
深圳市科技计划项目(KCXFZ20201221173413127、KCXFZ20201221173413127)。
关键词
改性氮化硼
芳纶纳米纤维
复合薄膜
力学性能
电气性能
modified boron nitride
aramid nanofibers
composite film
mechanical properties
electrical performance