期刊文献+

需求可拆分半开放式成品油二次配送问题

Split-delivery half-open refined oil secondary distribution problem
在线阅读 下载PDF
导出
摘要 研究了半开放式成品油二次配送问题,即油罐车在行驶过程中可以选择任意油库进行补货或者结束配送,且加油站的需求可以被拆分配送.在实际配送中,油耗成本不仅与行驶距离相关,也与货物重量相关.考虑了车辆载重引起的油耗成本,以最小化车辆固定使用成本和油耗成本为目标,建立了混合整数线性规划模型.提出了自适应大规模邻域搜索算法进行求解,结合问题的特性设计了多个移除/插入算子,采用改进的贪婪插入算法生成初始解,并设计了需求再分配策略和油库调整策略.使用SDVRP基准算例和某成品油公司的实际配送数据进行了数值实验,并与变邻域搜索算法、改进模拟退火算法和混合遗传算法进行了对比.计算结果表明,自适应大规模邻域搜索算法在求解质量和求解效率上均有一定的优势.此外,相比公司实际配送方案,提出的模型和算法能够显著降低配送成本. The half-open refined oil secondary distribution problem is investigated,where trucks can choose any depot for replenishment or termination,and stations’demands can be split.In real transportation,fuel consumption costs are not only related to driving distance but also to cargo weight.This paper develops a mixed integer linear programming model to minimize bothfixed utilization cost and fuel consumption cost.An adaptive large neighborhood search algorithm is proposed,incorporating multiple destroy/repair operators combing problem property,an improved greedy insertion algorithm used for initialization,a demand redistribu-tion strategy,and a depot adjustment strategy.Numerical experiments are conducted using SDVRP benchmark instances and actual data from a refined oil company.The performance of proposed algorithm is compared with variable neighborhood search,improved simulated annealing,and a hybrid genetic algorithm.Computational results show that the proposed algorithm is superior in both solution quality and efficiency.Moreover,it can significantly reduce the distribution cost of the company.
作者 王文嘉 车阿大 Wang Wenjia;Che Ada(School of Management,Northwestern Polytechnical University,Xi’an 710072,China)
出处 《系统工程学报》 CSCD 北大核心 2024年第6期853-867,共15页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(72271201,72310107003).
关键词 成品油二次配送 半开放式 需求可拆分 货物权重 自适应大规模邻域搜索 refined oil secondary distribution half-open split-delivery weight-related cost adaptive large neighborhood search
  • 相关文献

参考文献15

二级参考文献107

共引文献178

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部