摘要
This paper addresses numerical analysis of thermo-hydromechanical processes in the context of deep geological disposal of radioactive waste.The emphasis is put on modeling of damaged zones induced by excavation,pore pressure and temperature changes.The theoretical background of thermo-poroelasticity for saturated porous media is first recalled.The framework for modeling initiation and evolution of induced cracks is then presented by using a variational approach of phase-field method.A specific model with two crack phase fields and considering thermo-hydromechanical interaction is proposed.A particular attention is paid on the description of shear cracks.The proposed model is implemented in the standard finite element method.An example of application is finally presented on the analysis of thermo-hydromechanical responses and cracked zones evolution around a typical disposal repository in the context of French concept for high level waste disposal.
基金
supported by the French National Agency for radioactive waste management(ANDRA)and the National Natural Science Foundation of China(No.12202099).