期刊文献+

锂金属电池用耐高压聚合物电解质的研究进展

Current Status of High Voltage Resistant Polymer Electrolytes in Lithium Metal Batteries
原文传递
导出
摘要 高压锂金属电池能有效助力高能量密度固态锂金属电池的开发,所用的固态锂金属电池高压正极需要匹配具有4.3V以上的电化学窗口(ESW)(相对于Li/Li^(+))的电解质。目前大多数固态聚合物电解质具有良好的界面相容性、机械性能和柔韧性,但是固态聚合物电解质在高氧化性电池的正极侧易发生严重的氧化分解而消耗掉部分电解质,且界面相容性也出现了明显的下降。基于此,本文综述了不同固态聚合物电解质的耐高压程度及其对应的影响因素,介绍了目前各种耐高压固态聚合物电解质的研究现状,重点介绍了引入氟基和氰基提高聚合物电解质耐高压性能的优化措施,最后对未来高性能耐高压聚合物电解质开发进行了展望。 High-voltage lithium-metal batteries can effectively contribute to the development of high-energydensity solid-state lithium-metal batteries.In this way,the high-voltage cathode of the solid-state lithium-metal battery needs to be matched with an electrolyte with an electrochemical window(ESW)(relative to Li/Li^(+))of 4.3 V or more.Most of the current solid-state polymer electrolytes have good interfacial compatibility,mechanical properties,and flexibility,but solid-state polymer electrolytes are prone to severe oxidative decomposition on the anode side of highly oxidizable batteries consuming part of the electrolyte,and the interfacial compatibility also shows a significant decrease.Based on this,this paper reviews the degree of high-voltage resistance of different solid-state polymer electrolytes and their corresponding influencing factors,introduces the current research status of various highvoltage solid-state polymer electrolytes,focuses on the introduction of fluorine and cyano groups to improve the highvoltage performance of the polymer electrolytes,and finally looks forward to the development of high-performance high-voltage polymer electrolytes in the future.
作者 刘霞 邓南平 高鲁 康卫民 Liu Xia;Deng Nanping;Gao Lu;Kang Weimin(School of Textile Science and Engineering,Tiangong University,Tianjin,300387)
出处 《化学通报》 CAS CSCD 北大核心 2024年第11期1273-1285,共13页 Chemistry
基金 国家自然科学基金项目(52203066) 中国博士后科学基金面上项目(2023M742135) 天津市企业科技特派员项目(23YDTPJC00490)资助。
关键词 聚合物电解质 高压 锂金属电池 氟基 氰基 Polymer Electrolyte High Voltage Lithium Metal Batteries Fluorine Group Cyanide Group
  • 相关文献

参考文献6

二级参考文献37

  • 1Fenton D E, Parker J M, Wright P V.Polymer, 1973, 14:589-591.
  • 2Zheng Honghe(郑洪河).Lithium-ion Battery Electrolyte(锂离子电池电解质).Beijing(北京):Chemical Industry Press(化学工业出版社), 2007:148-149.
  • 3Zheng Jinyan(郑金燕), Zhang Yi(张益), Wang Yuechuan(王跃川).化工新型材料, 2007, 4(35): 49-51.
  • 4Mezianea R, Bonneta J P, Courtya M, Djellabb K, Arma M.Electrochimica Acta, 2011, 57:14-19.
  • 5Ji JY, Li B, Zhong W H.J Phys Chem B, 2010, 114:13637-13643.
  • 6Laurent J G, Khaldi A, Maziz A, Cedric P, Giao T M, Aubert P H, Vidal F, Chevrot C, Teyssie D.Macromolecules, 2011, 44:9683-9691.
  • 7Suait M S, Ahmad A, Rahman M Y.Ionics, 2009, 15:497-500.
  • 8Lee J Y, Lee Y M, Bhaskar B, Nho Y C, Park J K.J Solid State Electrochem, 2010, 14:1445-1449.
  • 9Croce F, Appetecchi G B, Persi L, Scrosati B.Nature, 1998, 394(30):456-458.
  • 10Liao Y H, Zhou D Y, Rao M M, Li W S, Cai Z P, Liang Y, Tan C T.J Power Sources, 2009, 189:139-144.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部