期刊文献+

σ-dominated charge transport in sub-nanometer molecular junctions

原文传递
导出
摘要 Quantum tunneling conductance of molecular junctions originates from the charge transport through theπ-orbitals(π-transport)and theσ-orbitals(σ-transport)of the molecules,but theσ-transport can not be observed due to the more rapid decay of the tunneling conductance in theσ-system compared to that in theπ-system.Here,we demonstrate that dominantσ-transport can be observed inπ-conjugated molecular junctions at the sub-nanometer scale using the scanning tunneling microscope break junction technique(STM-BJ).We have found that the conductance of meta-connected picolinic acid,which mainly occurs byσ-transport,is∼35 times higher than that of its para-isomer,which is entirely different from what is expected fromπ-transport through these systems.Flicker noise analysis reveals that the transport through the meta-connection exhibits more through-bond transport than the para-counterpart and density functional theory(DFT)shows that theσ-system provides the dominant transport path.These results reveal that theσ-electrons,rather than theπ-electrons,can dominate charge transport through conjugated molecular junctions at the sub-nanometer scale,and this provides a new avenue toward the future miniaturization of molecular devices and materials.
出处 《Fundamental Research》 CAS CSCD 2024年第5期1128-1136,共9页 自然科学基础研究(英文版)
基金 supported by the National Natural Science Foundation of China(21722305,21673195,21973079,and 21703188) the National Key R&D Program of China(2017YFA0204902) the Guangdong Basic and Applied Basic Research Foundation(2020A151511106).
  • 相关文献

参考文献2

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部