期刊文献+

基于CNN-GRU与特征增强的超短期光伏功率预测

Ultra-Short-Term Power Prediction of PV Based on CNN-GRU with Feature Augmentation
在线阅读 下载PDF
导出
摘要 超短期光伏功率预测对电力系统的实时调度有着重要意义。针对以往深度学习预测光伏输出功率重模型轻特征的特点,提出了一种基于CNN-GRU与特征增强的超短期光伏功率预测方法。首先将历史数据按照季节划分,以平抑季节性变化对光伏输出功率的影响。然后将可测数据基于其物理性质进行特征增强,使其能够被神经网络模型更充分的挖掘。最后采用CNN-GRU模型充分挖掘数据的时间与空间特征,进一步提升预测准确率。应用中国江苏某装机容量为75 MW光伏电站实际生产数据进行仿真验证,结果表明,上述方法在不同季节、天气情况下的预测精度均有较为明显的提升。 Ultra-short-term PV power prediction is significant for the real-time dispatching of power systems.A ultra short term photovoltaic power prediction method based on CNN-GRU and feature enhancement is proposed to address the characteristics of previous deep learning models that emphasize models and underestimate features in predicting photovoltaic output power.Firstly,historical data are divided by seasons to mitigate the impact of seasonal variations on PV output power.Then the measurable data are feature-enhanced based on their physical properties so that they can be more fully exploited by the neural network model.Finally,the CNN-GRU model is used to fully exploit the temporal and spatial characteristics of the data to further improve the prediction accuracy.The simulation is validated by applying the actual production data of a 75 MW installed capacity PV plant in Jiangsu,China,and the results show that the prediction accuracy of the method is improved more significantly under different seasons and weather conditions.
作者 李宇豪 杨建卫 李佳瑞 刘永生 LI Yu-hao;YANG Jian-wei;LI Jia-rui;LIU Yong-sheng(Solar Energy Research Institute,Shanghai Electric Power University,Shanghai 201306,China;China Power Hua Chuang(Suzhou)Electricity Technology Research Co.,Ltd.,Suzhou Jiangsu 215123,China)
出处 《计算机仿真》 2024年第10期83-88,共6页 Computer Simulation
基金 国家自然科学基金(51971128,52171185) 上海市优秀学术/技术带头人计划(20XD1401800)。
关键词 超短期光伏功率预测 特征增强 倾斜辐照度 光伏电池温度 卷积神经网络 门控循环单元网络 Ultra-short-term PV power forecasting Feature augmentation Solar irradiance Cell temperature Convolutional Neural Networks Gate recurrent unit
  • 相关文献

参考文献3

二级参考文献87

  • 1王育飞,付玉超,薛花.计及太阳辐射和混沌特征提取的光伏发电功率DMCS-WNN预测法[J].中国电机工程学报,2019,39(S01):63-71. 被引量:33
  • 2董雷,周文萍,张沛,刘广一,李伟迪.基于动态贝叶斯网络的光伏发电短期概率预测[J].中国电机工程学报,2013,33(S1):38-45. 被引量:77
  • 3European Photovoltaic Industry Association. Global market outlook for photovoltaics 2014, 2018[R]. EPIA Report, 2014.
  • 4PVPS lEA. 2014 snapshot of global PV markets[R]. Report lEA PVPS T1-26, 2015.
  • 52014年光伏产业发展情况[EB/OL].[2015-02-15].http://www.nea.gov.cn/201502/15/c_133997454.htm.
  • 6GLASSLEY W, KLEISSL J, SHIU H, et al. Current state of the art in solar forecasting, final report: Appendix A California renewable energy forecasting, resource data and mapping[R]. California Institute for Energy and Environment, 2010.
  • 7PELLAND S, REMUND J, KLEISSL J, et al. Photovoltaic and solar forecasting: state of the art[R], lEA PVPS Task, 2013.
  • 8LONG H, ZHANG Z, SU Y. Analysis of daily solar power prediction with data-driven approaches [ J ]. Applied Energy, 2014, 126:29-37.
  • 9MARQUEZ R, COIMBRA C F M. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database [ J ]. Solar Energy, 2011, 85(5) : 746-756.
  • 10ALMONACID F, PEREZ-HIGUERAS P J, FERNANDEZ E F, et al. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator[J]. Energy Conversion and Management, 2014 (85) : 389-398.

共引文献247

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部