摘要
手性单体均聚物和共聚物的立体结构和单体/单元序列结构是聚合物规整程度的一个重要参数。提高聚合反应的立体选择性以及提高两种不同手性单体共聚合反应的交替选择性是得到高规整度聚合物的重要手段。为了展示一个新催化合成体系的性能,通过聚合物的核磁图谱解析聚合物的微观结构,进而推导聚合反应的立体选择性和交替选择性是必要的分析手段。近年来,手性环酯单体立体选择性聚合以及交替聚合有较多工作被报道,然而就计算方法的相关文献特别是中文文献还很少。本文总结了外消旋手性单体均聚物中不同手性构型多元组信号的指认方法,进而展示了基于链末端控制机理、位点控制机理的立体选择性计算方法,以及基于不同手性单体的交替聚合反应所得聚合物的交替概率计算方法。
The stereostructure and monomer/unit sequence structure of chiral monomer homopolymers and copolymers are important parameters of the regularity of polymer.Improving the stereoselectivity of polymerization reactions and increasing the alternating level of two different chiral monomer copolymerization reactions are important means to obtain high regularity polymers.In order to demonstrate the performances of a new catalytic synthesis system,it is necessary to analyze the microstructure of the polymer through its nuclear magnetic resonance spectrum,and then derive the stereoselectivity and alternating level of the polymerization reaction.In recent years,there have been many publications on stereoselective polymerization and alternating polymerization of chiral cyclic ester monomers.However,there are few relevant literature,especially Chinese literature,on calculation methods.This article provides a systematic review of the identification of different chiral configurations in racemic chiral monomer homopolymers,and further demonstrates the stereoselectivity calculation methods based on two stereoselective mechanisms:chain end control mechanism and site control mechanism,as well as the alternating probability calculation method for polymers obtained from alternating polymerization reactions of different chiral monomers.
作者
顾君毅
赖敏
邬金才
GU Jun-yi;LAI Min;WU Jin-cai(School of Physics and Optoelectronic Engineering,Nanjing University of Information Science and Technology,Nanjing 210044,China;College of Chemistry and Chemical Engineering,Lanzhou University,Lanzhou 730000,China)
出处
《高分子通报》
CAS
CSCD
北大核心
2024年第10期1482-1498,共17页
Polymer Bulletin
基金
国家自然科学基金(基金号22071093)。
关键词
立体结构
序列结构
多元组
立体选择性
交替概率
Stereostructure
Sequence structure
Multiads
Stereoselectivity
Alternating probability