期刊文献+

Design of Solid Electrolytes with Fast Ion Transport:Computation-Driven and Practical Approaches 被引量:4

原文传递
导出
摘要 For next-generation all-solid-state metal batteries,the computation can lead to the discovery of new solid electrolytes with increased ionic conductivity and excellent safety.Based on computational predictions,a new proposed solid electrolyte with a flat energy landscape and fast ion migration is synthesized using traditional synthesis methods.Despite the promise of the predicted solid electrolyte candidates,conventional synthetic methods are frequently hampered by extensive optimization procedures and overpriced raw materials.It is impossible to rationally develop novel superionic conductors without a comprehensive understanding of ion migration mechanisms.In this review,we cover ion migration mechanisms and all emerging computational approaches that can be applied to explore ion conduction in inorganic materials.The general illustrations of sulfide and oxide electrolyte structures as well as their fundamental features,including ion migration paths,dimensionalities,defects,and ion occupancies,are systematically discussed.The major challenges to designing the solid electrolyte and their solving strategies are highlighted,such as lattice softness,polarizability,and structural disorder.In addition to an overview of recent findings,we propose a computational and experimental approach for designing high-performance solid electrolytes.This review article will contribute to a practical understanding of ion conduction,designing,rapid optimization,and screening of advanced solid electrolytes in order to eliminate liquid electrolytes.
出处 《Energy Material Advances》 EI CAS CSCD 2023年第1期77-111,共35页 能源材料前沿(英文)
基金 National Natural Science Foundation of China(grant nos.U1932205 and 52002197) Key R&D Program of Shandong Province(grant no.2021CXGC010401) “Taishan Scholars Program”(grant no.ts201712035).
  • 相关文献

参考文献11

二级参考文献85

  • 1陈立坤,胡懿,马家宾,黄妍斐,俞静,贺艳兵,康飞宇.Li^+电池固态聚合物电解质研究进展[J].化学工业与工程,2020,37(1):2-16. 被引量:10
  • 2刘文元,李驰麟,傅正文.含氮磷酸锂薄膜在空气中的稳定性[J].物理化学学报,2006,22(11):1413-1418. 被引量:9
  • 3Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359-367.
  • 4Karden E, Ploumen S, Fricke B, et al. Energy storage devices for fu- ture hybrid electric vehicles. J Power Sources, 2007, 168(1): 2-11.
  • 5Dunn B, Kamath H, Tarascon I M. Electrical energy storage for the grid: A battery of choices. Science, 2011,334(6058): 928-935.
  • 6Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev, 2004, 104(10): 4303-4417.
  • 7Quartarone E, Mustarelli P. Electrolytes for solid-state lithium re- chargeable batteries: Recent advances and perspectives. Chem Soc Rev, 2011, 40(5): 2525-2540.
  • 8Hautier G, Fischer C C, Jain A, et al. Finding nature's missing ter- nary oxide compounds using machine learning and density functional theory. Chem Mater, 2010, 22(12): 3762-3767.
  • 9Hantier G, Fischer C, Ehrlacher V, et al. Data mined ionic substitu- tions for the discovery of new compounds. Inorg Chem, 2011, 50(2): 656-663.
  • 10Heitjans P, Indris S. Diffusion and ionic conduction in nanocrystal- line ceramics. J Phy-Condens Mat, 2003, 15(30): R1257.

共引文献28

同被引文献24

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部