期刊文献+

基于多因子混频GARCH的汇率波动性研究

Research on Exchange Rate Volatility Based on Multi-factor Mixed Frequency Time Series Model
在线阅读 下载PDF
导出
摘要 宏观经济环境的变化会传导作用于外汇市场,然而宏观数据多为月度低频数据,汇率为日度高频数据,这使得自变量与因变量之间的时间间隔不一。鉴于此,选用GARCH-MIDAS与GJR-GARCH两种混频时间序列模型对其展开研究,选择Shibor, M2与工业增加值的水平值作为宏观低频输入变量,通过滑动窗口测得的22日CNY/USD汇率方差作为真实波动率的代理变量。结果表明:低频成分的解释变量会对高频汇率的条件方差产生影响,利率以及利率与其它因子的双因子组合具有相对较好的拟合性,且这些因子对长期成分非对称性影响是不显著的。 Changes in the macroeconomic environment can have in impact on the foreign exchange market.However,the macro data are mostly monthly low-frequency data,and the exchange rate is daily high-frequency data,which makes the time interval between the ind ependent variable and the dependent variable different.In view of this,this paper selects GARCH-MIDAS and GJR-GARCH two mixed frequency time series models to study it,selects Shibor,M2 and the level of industrial added value as comprehensive input variables,and measu res the 22-day CNY through a sliding window.The variance of the USD exchange rate as a proxy for true volatility.The results show that the explanatory variables of the low-frequency components will have an impact on the cond itional variance of the high-frequency exchange rate,the interest rate a nd the two-factor combination of interest rates and other factors have a relatively good fit,and these factors have no significant effect on long-term compositional asymmetry.
作者 赵耀 张英辉 ZHAO Yao;ZHANG Ying-hui(Xingzhi College,Xi'an University of Financeand Economics,Xi'an,Shaanxi 710026,China)
出处 《计算机仿真》 2024年第7期383-389,共7页 Computer Simulation
基金 陕西省教育厅专项科学研究计划(19JK0330)。
关键词 人民币汇率 波动性 混频时间序列模型 多因子 CNY exchange rate Volatility Mixing time series model Multi-factor
  • 相关文献

参考文献3

二级参考文献41

  • 1陈六傅,钱学锋.人民币实际汇率弹性的非对称性研究:基于中国与G-7各国双边贸易数据的实证分析[J].南开经济研究,2007(1):3-18. 被引量:32
  • 2Oksendal B. Stochastic differential equations[M]. Berlin : Springer-Verlag, 1998.
  • 3Achdou Y, Pironneau O. Computational methods for option pricing[M]. Cambridge University Press, 2005.
  • 4Yu J, Yang Z L. Zhang X B. A class of nonlinear stochastic volatility models and its implications for pricing currency options[J]. Computational Statistics & Data Analysis, 2006,51 : 2218-2231.
  • 5Barndorff-Nielsen E O, Neil S. Power and bipower variation with stochastic volatility and jumps [J]. Journal of Financial Eeonometries, 2004,2 (1) : 1- 37.
  • 6Meyer R, Yu J. BUGS for a Bayesian analysis of stochastic volatility models[J]. Econometrics Journal,2000,3:198-215.
  • 7Hsieh D A. Statistical properties of daily exchange rates: 1974-1983[J]. Journal of International Economics, 1988,24 : 129-145.
  • 8Chen S W. GARCH, jumps and permanent and transitory components of volatility: the case of Taiwan exchange rate [J]. Mathematics and Computers in Simulation, 2004,67 (3) : 201-216.
  • 9Johnston K, Scott E. The statistical distribution of daily exchange rate price changes: dependent vs independent models [J]. Journal of Financial and Strategic Decisions, 1999,12 (2) : 39-49.
  • 10Vlaar P, Palm. The message in weekly exchange sates in the European Monetary System: mean reversion, conditional heteroskedasticity and jumps[J]. Journal of Business and Economic Statistics, 1993,11:351-360.

共引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部