摘要
高性能透明导电薄膜是光伏电池、平板显示器等光电子器件的重要组成部件。发展了基于水相剥离的单壁碳纳米管透光导电薄膜制备方法,分析单壁碳纳米管薄膜透光率、方阻和浓度之间的依变关系,探究杂化处理对薄膜透光和导电性能的影响规律。结果表明:通过调节单壁碳纳米管浓度实现了薄膜在太阳光谱范围(300~2500 nm)透光率(50%~96%)的准确预测、方阻特性在3~100Ω·sq^(-1)之间的精准调控;通过酸回流和强氧化的纯化过程,透光率在750~2000 nm波段平均提升3.1%,方阻降低50%以上。该透明导电薄膜具有高透光率和低电阻的优异综合性能,在光电子器件设计方面具有广阔的应用前景。
High-performance transparent conductive films are important components of optoelectronic devices such as photovoltaic cells and flat panel displays.This study introduces a novel method for fabricating single-walled carbon nanotube transparent conductive films via water-phase exfoliation.The interdependence among transmittance,sheet resistance,and SWCNT concentration in the films is explored.Additionally,the impact of hybrid treatments on film transmittance and conductivity is examined.The results demonstrated accurate predictions of the films’transmittance(ranging from 50%to 96%)within the solar spectrum(300—2500 nm).Precise control over sheet resistance characteristics,ranging from 3Ω·sq-1 to 100Ω·sq-1,was achieved by adjusting the concentration of single-walled carbon nanotubes.Through the purification process of acid reflux and strong oxidation,the light transmittance increased by an average of 3.1%in the 750—2000 nm band,and the sheet resistance was reduced by more than 50%.These transparent conductive films demonstrate excellent overall performance,characterized by high transmittance and low resistance,thereby presenting extensive prospects for the advancement of optoelectronic devices.
作者
白炳林
杜燊
李明佳
张传琪
BAI Binglin;DU Shen;LI Mingjia;ZHANG Chuanqi(Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education,School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China;School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处
《化工学报》
EI
CSCD
北大核心
2024年第7期2680-2687,共8页
CIESC Journal
基金
国家自然科学基金项目(52076161,52306272)。
关键词
单壁碳纳米管
膜
透光导电
水相剥离
过滤
纳米材料
single-walled carbon nanotubes
film
transmittance and conductive
water-phase exfoliation
filtration
nanomaterials