期刊文献+

基于改进野狗优化算法优化极限学习机的空调负荷预测方法 被引量:2

Optimization of Extreme Learning Machine for Air-conditioning Load Prediction Based on Improved Dingo Optimization Algorithm
在线阅读 下载PDF
导出
摘要 针对目前短期空调负荷预测方法预测精度低、稳定性差等问题,提出一种基于微生物遗传算法(Microbial genetic algorithm,MGA)和野狗优化算法(Dingo optimization algorithm,DOA)优化极限学习机(Extreme learning machine,ELM)的空调负荷预测模型。首先利用DOA优化ELM的输入权值和隐层阈值,建立DOA-ELM预测模型,利用MGA改进DOA-ELM模型的预测稳定性和预测精度,建立(Microbial genetic algorithm Dingo optimization algorithm-Extreme learning machine)MDOA-ELM预测模型。为降低预测模型的维度,通过灰色关联分析(GRA)筛选影响空调负荷的输入输出因素。为验证算法有效性,以某工厂中央空调系统为例进行实例分析。实验结果表明,所建负荷预测模型相较于对比模型预测精度高,稳定性好,因此可更好地满足工程实际需求。 A novel air conditioning load prediction model based on Microbial genetic algorithm(MGA)and Dingo optimization algorithm(DOA)optimized Extreme learning machine(ELM)is proposed in this paper to address the issues of low prediction accuracy and poor stability in short-term air conditioning load prediction methods.A DOA-ELM prediction model is established by using DOA to optimize the input weights and hidden layer thresholds of ELM.An MDOA-ELM prediction model is established by using MGA to improve the prediction stability and accuracy of the DOA-ELM model.To reduce the dimensionality of the prediction model,Grey relational analysis(GRA)is used to screen the input and output factors that affect air conditioning load.An air conditioning load prediction example on the central air conditioning system of a factory is provided to verify the effectiveness of the proposed algorithm.Comparing with the reported model,the experimental results show that the established load prediction model has higher prediction accuracy and better stability,and therefore is able to better meet the actual needs of the project.
作者 代广超 吴维敏 Dai Guangchao;Wu Weimin(Polytechnic Institute of Zhejiang University,Hangzhou,310015;School of Control Science and Engineering,Zhejiang University,Hangzhou,310027)
出处 《制冷与空调(四川)》 2024年第3期320-329,共10页 Refrigeration and Air Conditioning
关键词 负荷预测 微生物遗传算法 野狗优化算法 极限学习机 灰色关联分析 Load Prediction Microbial Genetic Algorithm Dingo Optimization Algorithm Extreme Learning Machine Grey Relational Analysis
  • 相关文献

参考文献5

二级参考文献46

  • 1曹双华,曹家枞,李涛,沈晓青.基于小波变换的神经网络空调负荷预测研究[J].暖通空调,2005,35(4):13-17. 被引量:13
  • 2张伟捷,吴金顺,魏一然,魏艳萍.基于正交实验法的建筑冷负荷影响因素分析[J].暖通空调,2006,36(11):77-80. 被引量:22
  • 3孟华,龙惟定,王盛卫.基于遗传算法的空调水系统优化控制研究[J].建筑节能,2007,35(1):39-42. 被引量:12
  • 4刘贵忠 邸双亮.小波分析及其应用[M].西安:西安电子科技大学出版社,2001..
  • 5杨位欣,顾岚.时间序列分析与动态数据建模(修订本)[M].北京:北京理工大学出版社,1988.
  • 6Kawashima M, Dorgan C E, Mitchell J W. Hourly thermal load prediction for the next 24 hours by ARIMA, EWMA, LR and an artificial neural network [J]. ASHRAE Trans,1995, 101 (1) :186-200.
  • 7Forrester J R, Wepfer W J. Formulation of a load prediction algorithm for a large commercial building[ J ]. ASHRAE Trans,1984, 90 (2B) :536-551.
  • 8MacarthurJ W, Mathur A, Zhao J. On-line recursive estimation for load profile prediction prediction [ J ]. ASHRAE Trans 1989, 95 (1) :621-628.
  • 9Kawashima M. Artificial neural network back propagation model with three-phase annealing developed for the building energy predictor shoot-out [ J ]. ASHRAE Trans 1994,100 (2) : 1096-1118 .
  • 10Kawashima M. Hourly thermal load prediction for the next 24 hours by ARIMA, EWMA, LR, and a neural network[J]. ASHRAE Trans, 1995,101 ( 1 ) : 186- 200.

共引文献55

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部