期刊文献+

基于CNN‑LSTM‑SE的心电图分类算法研究 被引量:3

Study on ECG Classification Algorithm Based on CNN‑LSTM‑SE
在线阅读 下载PDF
导出
摘要 心血管疾病是我国死亡率较高的疾病之一,通过观察心电图来判断心电信号是否出现异常能够对心血管疾病进行预防和筛查。由于心电图数据规模大且繁杂,临床医护人员在心电图筛查时,工作负担大且容易出现误诊或漏诊的情况。为了提高心电图的筛查效率、减少医护人员的压力,提出了一种基于卷积神经网络、长短期记忆神经网络和SE网络的心电图分类算法模型(CNN-LSTM-SE),该模型将心电图分成5种不同的类别。主要研究内容包括:选用MIT-BIH心律失常数据集作为心电信号的数据来源,使用巴特沃斯带通滤波器对心电信号进行去噪处理,通过Z-score方法对心电信号进行标准化处理,利用独热编码方法对心电信号标签进行编码,最后使用处理后的心电数据对所提算法模型进行训练和测试。实验结果表明:所提模型相较于其它模型,能够有效提高心电图分类的准确性,在实验数据集上的分类准确率达到99.1%。 Cardiovascular disease is one of the diseases with high mortality rate in China.Monitoring electrocardiograms to determine if there are abnormalities in the electrical signals of the heart can be used to prevent and screen for cardiovascular disease.Due to the large scale and complexity of electrocardiogram data,clinical medical staff have a heavy workload and are prone to misdiagnosis or missed diagnosis during electrocardiogram screening.In order to improve the screening efficiency of electrocardiogram and reduce the pressure on medical staff,a model based on convolutional neural network,long and short-term memory neural network and SE network(CNN-LSTM-SE)was proposed to divide electrocardiogram into five categories.The main research contents include:MIT-BIH arrhythmia data set is selected as the data source of ECG signals,Butterworth bandpass filter is used to de-noise ECG signals,Z-score method is used to standardize ECG signals,and unique thermal coding method is used to encode ECG labels.Finally,the proposed algorithm model is trained and tested using the processed ECG data.The experimental results show that compared with other models,the proposed model can effectively improve the accuracy of ECG classification,and the classification accuracy of the experimental data set reaches 99.1%.
作者 王建荣 邓黎明 程伟 李国翚 WANG Jianrong;DENG Liming;CHENG Wei;LI Guohui(College of Intelligence and Computing,Tianjin University,Tianjin 300000,China;School of Automation and Software,Shanxi University,Taiyuan 030000,China;Department of Product R&D,Tianjin Development Zone Orking High Tech.Co.,Ltd.,Tianjin 300000,China)
出处 《测试技术学报》 2024年第3期264-273,共10页 Journal of Test and Measurement Technology
基金 国家重点研发计划资助项目(2018YFC2000701) 中国博士后科学基金资助项目(2021M692400) 山西省基础研究计划资助项目(202203021221017)。
关键词 心律失常 心电图 卷积神经网络 SE网络 长短期记忆神经网络 arrhythmia electrocardiogram convolutional neural network(CNN) SE net long and short term memroy neural network(LSTM)
  • 相关文献

参考文献9

二级参考文献81

  • 1Uchida Yasuto,Kanai Masahito,Maezawa Yuko,Maezawa Yoshiro,Shirai Seiichiro,Nakagawa Osamu,Uchida Yasumi.Cardioscopic observation of subendocardial microvessels in patients with coronary artery disease. International heart journal . 2011
  • 2Doesch Christina,Süselbeck Tim,Haghi Dariusch,Streitner Florian,Schoenberg Stefan O,Borggrefe Martin,Papavassiliu Theano.The relationship between the severity of coronary artery disease and epicardial adipose tissue depends on the left ventricular function. PloS one . 2012
  • 3Corrado Domenico,Pelliccia Antonio,Heidbuchel Hein,Sharma Sanjay,Link Mark,Basso Cristina,Biffi Alessandro,Buja Gianfranco,Delise Pietro,Gussac Ihor,Anastasakis Aris,Borjesson Mats,Bj?rnstad Hans Halvor,Carrè Fran?ois,Deligiannis Asterios.Recommendations for interpretation of 12-lead electrocardiogram in the athlete. European Heart Journal . 2009
  • 4Zhou J,Lu XL.Dynamic electrocardiogram and general correlation analysis of electrocardiogram in diagnosis of asymptomatic myocardial ischemia〔J〕. Chin J Pract Diagn Treatment . 2009
  • 5Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60 (2) 91 110.
  • 6Dalai N, Triggs B. Histograms of oriented gradients for human detection[C]//Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society Conference on. San Diego, USA: IEEE, 2005, 1 886-893.
  • 7Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786) : 504-507.
  • 8Hubel D H, Wiesel T N. Receptive fields, binocular interaction and functional architecture in the catrs visual cortex[J]. The Journal of Physiology, 1962, 160(1): 106-154.
  • 9Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in posi- tion[J]. Pattern Recognition, 1982, 15(6): 455-469.
  • 10Ruck D W, Rogers S K, Kabrisky M. Feature selection using a multilayer perceptron[J]. Journal of Neural Network Com- puting, 1990, 2(2): 40-48.

共引文献2668

同被引文献17

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部