期刊文献+

具有八值Walsh谱的布尔函数的构造

Construction of Boolean functions with eight-valued Walsh spectrum
在线阅读 下载PDF
导出
摘要 布尔函数在编码理论、对称密码学和序列设计中起着重要作用.Walsh变换是研究布尔函数密码学性质的重要工具.本文利用两类bent函数在4个不同点的函数值互补,构造两类具有八值Walsh谱的布尔函数,并确定它们的Walsh谱值分布. Boolean functions play an important role in coding theory,symmetric cryptography and sequence design.The Walsh transform is an important tool to investigate cryptographic properties of Boolean functions.Two classes of Boolean functions with eight-value Walsh spectrum are constructed by using the complementary values of two classes of bent functions at four different points,and their Walsh spectrum value distributions are determined.
作者 张蔚郁 卓泽朋 Zhang Weiyu;Zhuo Zepeng(School of Mathematical Sciences,Huaibei Normal University,Huaibei 235000,Anhui,China)
出处 《江苏师范大学学报(自然科学版)》 CAS 2024年第2期53-59,共7页 Journal of Jiangsu Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(61902140) 淮北师范大学结余经费资助项目(2023ZK032,RE230438)。
关键词 布尔函数 BENT函数 八值Walsh谱 WALSH变换 Boolean function bent function eight-valued Walsh spectrum Walsh transform
  • 相关文献

参考文献2

二级参考文献28

  • 1Rothus O, On "bent" functions. J. Combin. Theory Set. A, 1976, 20: 300-305.
  • 2Chee S, Lee S, and Kim K, Semi-bent Functions. Advances in Cryptology-ASIACRYPT'94, 4th Int. Conf. on the Theory and Applications of Cryptology, Wollongong, Australia (eds. by Pieprzyk J and Safavi-Naini R), Lecture Notes on Computer Science, 1994, 917: 107-118.
  • 3Zeng X, Carlet C, Shan J, and Hu L, More balanced Boolean functions with optimal algebraic immunity and nonlinearity and resistance to fast algebraic attacks, IEEE Transactions on Infor- mation Theory, 2011, 57(9): 6310-6320.
  • 4Zheng Y and Zhang X, Plateaued functions. Advances in Cryptology-ICICS 1999, Lecture Notes in Computer Science, 1726, Springer-Verlag, Berlin, Germany, 1999.
  • 5Mesnager S, Semi-bent functions from Dillon and Niho exponents, Kloosterman sums and Dickson polynomials, IEEE Transactions on Information Theory, 2011, 57(11): 7443--7458.
  • 6Wang B, Tang C, Qi Y, Yang Y, and Xu M, A new class of hyper-bent Boolean functions in binomial forms, CoRR, abs/ll12.0062, 2011.
  • 7Wang B, Tang C, Qi Y, Yang Y, and Xu M, A generalization of the class of hyper-bent Boolean functions in binomial forms. Cryptology ePrint Archive, Report 2011/698, http://eprint.iacr.org/, 2011.
  • 8Charpin P, Pasalic E, and Tavernier C, On bent and semi-bent quadratic Boolean functions, IEEE Transactions on Information Theory, 2005, 51(12): 4286-4298.
  • 9Lachaud G and Wolfmann J, The weights of the orthogonal of the extended quadratic binary Goppa codes, IEEE Transactions on Information Theory, 1990, 36(3): 686-692.
  • 10Lidl R, Mullen G, and Turnwald G, Dickson Polynomials. Pitman Monographs in Pure and Applied Mathematics, Addison-Wesley, 1993, 65.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部