期刊文献+

湾位双键官能化苝酰亚胺的合成及其溶液自组装行为研究

Synthesis and solution self-assembly behavior study of bay-site double bond functionalized perylene diimide
在线阅读 下载PDF
导出
摘要 通过对苝酰亚胺的改性,合成了湾位双键官能团化、侧链为燕尾链的苝酰亚胺衍生物1,7-vinyl-PDI-EH。通过控制变量、优化合成反应条件,以反应浓度3.5 mg/mL在色谱纯级别(HPLC)四氢呋喃中反应2 h时,目标产物产率最高。进一步采用紫外可见分光光谱、荧光光谱以及浓度依赖光谱对其光物理性能和自组装行为进行表征,结果表明1,7-vinyl-PDI-EH在氯仿溶液中浓度达到1.1×10^(-4 )mol/L后随着浓度增大荧光淬灭,7.0×10^(-4) mol/L时分子产生明显自组装。通过氯仿和甲醇体系的双扩散晶体培养,得到1,7-vinyl-PDI-EH晶体,其在结晶状态下仍有一定荧光性能。 A new perylene diimide derivative called 1,7-vinyl-PDI-EH was synthesized,containing a double bond at the bay site and a swallow-tailed side chain at the imide site.The reaction conditions were optimized,and the highest yield of 1,7-vinyl-PDI-EH was achieved at a concentration of 3.5 mg/ml in HPLC-grade tetrahydrofuran with a reaction time of 2 hours.The photophysical properties and solution self-assembly behavior were characterized using UV-Vis and fluorescence spectroscopy.As the concentration increased above 1.1×10^(-4) mol/L in chloroform solution,fluorescence quenching was observed,with the self-assembly concentration of 1,7-vinyl-PDI-EH determined to be 7.0×10^(-4) mol/L.Crystals of 1,7-vinyl-PDI-EH were obtained using a double-diffusion method in a chloroform/methanol system and exhibited fluorescence in the crystalline state.
作者 赵浩儒 鄂曾泽 顾丹丹 桑伟慧 韩天娇 廖作桂 陈珈 江晓泽 孙宾 Zhao Haoru;E Zengze;Gu Dandan;Sang Weihui;Han Tianjiao;Liao Zuogui;Chen Jia;Jiang Xiaoze;Sun Bin(State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Materials Science and Engineering,Donghua University,Shanghai 201620,China;Guangdong Yinuo Composite Material Co.,Ltd.,Yunfu Guangdong 527100,China)
出处 《合成技术及应用》 CAS 2024年第2期33-40,共8页 Synthetic Technology & Application
关键词 苝酰亚胺 湾位取代 双键官能团化 合成 表征 溶液自组装 perylene diimide bay-site substitution double bond functionalized synthesis characterization solution self-assembly
  • 相关文献

参考文献2

二级参考文献56

  • 1Wang Y,Xu H,Zhang X.[J]. Adv Mater,2009,21 (28):2849- 2864.
  • 2Zhang X,Wang C. [J]. Chem Soc Rev,2011,40(1):94-101.
  • 3Christopher A H,Jeremy K M. EJ]. J Am Chem Soc, 1990,112 (21) : 5525-5534.
  • 4Nguyen T Q,Martel R,Nuckolls C. [J]. J Am Chem Soc,2004, 126(28) : 5234-5242.
  • 5Liao S H,Shiu J R,Wu C I. EJ]. J Am Chem Soc,2009,131(2) : 763-777.
  • 6Linsen L,Min G,Guo H C,et al. [J]. Applied Physics A:Mate- rials Science b- Processing,2010,99(1) :251-254.
  • 7Effertz C, Lahme S, Schulz P, et al. [J]. Adv Funct Mater, 2012,22(2) :415-420.
  • 8Liscio F, Milita S, Albonetti C, et al. [J]. Adv Funct Mater, 2012,22(5) : 943-953.
  • 9Savage R C, Orgiu E, Mativetsky J M, et al. [J]. Nanosca|e, 2012,4(7) : 2387-2393.
  • 10Miura T, Wasielewski M R. [J]. J Am Chem Soc, 2011,133(9) : 2844-2847.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部