期刊文献+

基于宽度学习的航天器编队分布式姿态协同容错控制

Distributed Attitude Cooperative Fault-Tolerant Control of Spacecraft Formations Based on Broad Learning System
在线阅读 下载PDF
导出
摘要 针对具有惯性不确定和执行器故障的航天器编队姿态协同控制问题,利用宽度学习系统的逼近特性对系统的广义扰动和执行器故障进行估计,同时采用迟滞量化器对控制力矩信号进行量化,以降低对通信速率的要求,并减少抖振现象。在此基础上,提出一种基于模型预测控制和快速非奇异积分终端滑模的复合结构容错控制器。利用代数图论和Lyapunov理论分析了闭环姿态系统的稳定性。最后,通过仿真验证了本文提出的控制方法与现有方法相比的优越性。 According to inertial uncertainties and multiple types of actuator faults of spacecraft formation attitude cooperative control,the generalized disturbances and actuator faults of the formation system are estimated by using the approximation property of the broad learning system,in the meantime,the hysteresis quantizer is also used to quantize the control torque signal,thereby reducing the communication speed requirements and jitter phenomenon.On this basis,a composite structure fault-tolerant controller based on model predictive control and fast non-singular integral terminal sliding mode is proposed.The stability of the closed-loop attitude system is analyzed by involving algebraic graph theory and Lyapunov theory.Finally,simulation results show the superiority of the proposed control method compared with existing methods.
作者 俞鑫丽 易辉 YU Xinli;YI Hui(Nanjing Tech University,Nanjing 211816,China)
机构地区 南京工业大学
出处 《航天控制》 CSCD 2024年第3期54-60,共7页 Aerospace Control
基金 国家自然科学优秀青年科学基金项目(61922042) 国家自然科学基金重点国际(地区)合作研究项目(62020106003) 江苏省前沿引领技术基础研究重大项目(2022050029)。
关键词 航天器编队 姿态跟踪 容错控制 模型预测控制 输入量化 宽度学习系统 Spacecraft formation Attitude tracking Fault-tolerant control Model predictive control Input quantization Broad learning system
  • 相关文献

参考文献5

二级参考文献29

  • 1王伟.具有Hammerstein形式的非线性系统广义预测控制[J].控制理论与应用,1994,11(6):672-680. 被引量:16
  • 2Blanke M, IzadiZamanabadi R, Bogh S A, et al. Fault- tolerant control systems- A holistic view[C]. Tutorial Workshop on Supervision, Fault Detection and Diagnosis of Technical Systems at the IFAC World Congress. San Francisco, 1996: 693-702.
  • 3Zhang Y M, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems[J]. Annual Reviews in Control, 2008, 32(2): 229-252.
  • 4Kobayashi Y, Ikeda M, Fujisaki Y. Stability of large space structures preserved under failures of local controllers[J]. IEEE Trans on Automatic Control, 2007, 52(2): 318-322.
  • 5Alwi H, Edwards C. Fault tolerant control using sliding modes with on-line control allocation[J]. Automatica, 2008, 44(7): 1859-1866.
  • 6Jin J H, Ko S H, Ryoo C K. Fault tolerant control for satellites with four reaction wheels[J]. Control Engineering Practice, 2008, 16(10): 1250-1258.
  • 7Cai W C, Liao X H, Song Y D. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft[J]. J of Guidance Control and Dynamics, 2008, 31(5): 1456- 1463.
  • 8Hou Q, Cheng Y H, Lu N Y, et al. Study on FDD and FTC of satellite attitude control system based on the effectiveness factor[C]. The 2nd Int Symposium on Systems and Control in Aerospace and Astronautics. Shenzhen, 2008: 1096-1101.
  • 9Jiang T, Khorasani K. A fault detection, isolation and reconstruction strategy for a satellite's attitude control subsystem with redundant reaction wheels[C]. IEEE Int Conf on Systems, Man and Cybernetics. Montreal, 2007: 1644-1650.
  • 10Boskovic J D, Prasanth R, Mehra R K. Retrofit fault- tolerant flight control design under control effector damage[J]. J of Guidance Control and Dynamics, 2007, 30(4): 703-712.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部