摘要
针对涡轮发动机涡轮叶片复杂应力状态下的时效变形问题,以涡轮叶片材料Waspaloy镍基合金为研究对象,开展Waspaloy镍基合金时效处理,完成时效态Waspaloy镍基合金600、700和750℃准静态高温力学拉伸试验。利用Ludwik和Hollomon经验公式预测Waspaloy镍基合金高温塑性段流变应力,引入平均误差(the mean error,E_(r))和均方根误差(root mean square error,RMSE)评价流变应力的预测准确度。结果表明,时效处理后合金的硬度得到有效提升,而其塑性性能有所降低。Waspaloy镍基合金的抗拉强度和延伸率在600~750℃区间范围内与加载温度呈负相关关系。Ludwik模型较Hollomon模型有更高的流变应力预测精度,而在高温高应变区域Ludwik模型预测流变应力仍存在较大误差。在Ludwik模型的基础上引入指数项,修正后的Ludwik模型能更好地预测Waspaloy镍基合金高温塑性段的流变应力。
Aiming at the aging deformation of turbine blades in turbine engines under complex stress,Waspaloy nickel-based alloy was taken as the research object to carry out aging treatment and complete quasi-static high temperature mechanical tensile tests of Waspaloy nickel-based alloy at 600,700 and 750 ℃.The flow stress of Waspaloy nickel-based alloy at high temperature plastic section was predicted by Ludwik and Hollomon empirical formulas,and the mean error(E_(r)) and root mean square error(RMSE) were introduced to evaluate the accuracy of the flow stress prediction.The results show that the hardness of Waspaloy nickel-based alloy is improved effectively after aging treatment,but its plastic properties are reduced.The tensile strength and elongation of Waspaloy nickel-based alloy are negatively correlated with the loading temperature in the range of 600~750 ℃.Ludwik model owns higher accuracy than Hollomon model in flow stress prediction,but there is a still large error in flow stress prediction in high temperature and high strain region.Based on the Ludwik model,the exponential term is introduced,and the modified Ludwik model have a better prediction result in the flow stress of Waspaloy nickel-based alloy at high temperature plastic section.
作者
许罗鹏
郝梦全
熊磊
张儒伦
李志欣
张宏
杨卫波
邹华维
XU Luo-peng;HAO Meng-quan;XIONG Lei;ZHANG Ru-lun;LI Zhi-xin;ZHANG Hong;YANG Wei-bo;ZOU Hua-wei(School of Science,Civil Aviation Flight University of China,Guanghan 618307,China;Failure Mechanics&Engineering Disaster Prevention and Mitigation,Key Laboratory of Sichuan Province,Sichuan University,Chengdu 610065,China;Sichuan Province Engineering Technology Research Center of General Aircraft Maintenance,Civil Aviation Flight University of China,Guanghan 618307,China;Polymer Research Institute,State Key Laboratory of Polymer Materials Engineering,Sichuan University,Chengdu 610065,China;Aviation Engineering Institute,Civil Aviation Flight University of China,Guanghan 618307,China;Zhejiang Guanlin Machinery Inc.,Anji 313310,China)
出处
《科学技术与工程》
北大核心
2024年第17期7406-7413,共8页
Science Technology and Engineering
基金
中国民航飞行学院中央高校基本科研业务费专项资金(J2020-060,ZJ2022-003,JG2022-27,J2021-060)
四川省通用航空器维修工程技术研究中心资助课题(GAMRC2021YB08)
四川大学破坏力学与工程防灾减灾四川省重点实验室2020年开放课题基金(2020FMSCU02)
国家自然科学基金面上项目(12272245)
四川省应用基础研究项目(2022NSFSC0324)。