期刊文献+

基于WPT和复合多尺度Bubble熵的轨道车辆轴箱轴承故障诊断 被引量:2

Fault Diagnosis of Rail Vehicle Axle-box Bearings Based on WPT and Composite Multi-scale Bubble Entropy
在线阅读 下载PDF
导出
摘要 为了提高轴承故障识别精度,同时减少甚至消除参数选择的影响,基于轴承振动加速度信号,提出了一种基于复合多尺度Bubble熵的滚动轴承故障诊断方法。基于轨道车辆轴箱轴承故障响应信号具有较强的非线性和非平稳特征,采用小波包变换频域能量特征重构,对重构信号提取复合多尺度Bubble熵作为故障特征,输入中等高斯支持向量机完成模型训练和故障模式识别。通过基于全尺寸单轮对-轴箱轴承滚动试验台试验的故障轴承数据集以及美国凯斯西储大学公用轴承数据集验证了所提方法的有效性。该方法在不经过参数调节过程的情况下可以达到较高的分类精度,在两种轴承数据集中的正常轴承与故障轴承之间的识别率均为100%,其中在公用轴承数据集中4种故障分类中总识别率为99.83%,在单轮对-轴承滚动试验台数据集中总识别率为93.75%,均高于同类轴承故障诊断算法。实验结果表明,该方法能够有效地提取轴承故障特征,为轨道车辆轴箱轴承状态监测与故障诊断提供了新的解决方案。 To improve the accuracy of bearing fault detection and reduce or eliminate the influence of parameter selection,a fault diagnosis method for rolling bearings based on composite multiscale bubble entropy is proposed using the vibration acceleration signal of the bearing.Since the response signals of axle-box bearings in rail vehicles exhibit strong nonlinear and non-stationary characteristics,wavelet packet transform frequency domain energy feature reconstruction is adopted.The composite multiscale Bubble entropy is extracted from the reconstructed signal as the fault feature,which is then input into a medium gaussian support vector machine for model training and fault mode recognition.The effectiveness of this method is verified using a dataset of faulty bearings from full-scale single-wheel-on-axle-box bearing rolling test rigs and a dataset of public bearings from Case Western Reserve University in the United States.This method achieves high classification accuracy without undergoing a parameter tuning process.The identification rates between normal and faulty bearings in both datasets are 100%,with a total identification rate of 99.83%for the four fault classifications in the public bearing dataset and 93.75%for the single-wheel-on-axle-box bearing rolling test rig dataset,which are higher than those of similar bearing fault diagnosis algorithms.Experimental results demonstrate that this method can effectively extract bearing fault features,providing a new solution for the monitoring and fault diagnosis of axle-box bearings in rail vehicles.
作者 邱小杰 樊麟华 陆正刚 Qiu Xiaojie;Fan Linhua;Lu Zhenggang(Insititute of Rail Transit,Tongji University,Shanghai 200092,China)
出处 《机电工程技术》 2024年第5期196-202,共7页 Mechanical & Electrical Engineering Technology
关键词 轨道车辆轴箱轴承 小波包变换 复合多尺度Bubble熵 MG-SVM 故障诊断 axle-box bearing of rail vehicle wavelet packet transform composite multi-scale bubble entropy MG-SVM fault diagnosis
  • 相关文献

参考文献8

二级参考文献89

  • 1李国全,高建宇,白天宇,李华.基于SVM与改进型乌鸦搜索算法的风电功率预测方法[J].国外电子测量技术,2022,41(2):40-45. 被引量:13
  • 2梅宏斌,吴雅,杨叔子,崔乐芳,吴克勤.用包络分析法诊断滚动轴承故障[J].轴承,1993(8):38-40. 被引量:11
  • 3张超 陈建军.EEMD方法和EMD方法抗模态混叠对比研究.振动与冲击,2010,:87-90.
  • 4陈季云,陈晓平.基于小波包分析的滚动轴承故障特征提取[J].微计算机信息,2007,23(02S):192-193. 被引量:27
  • 5赵玉成,陈荣华,马占国.旋转机械动力辨识与故障诊断技术[M].徐州:中国矿业大学出版社,2008.
  • 6LI Bo, CHOW Mo-Yuen, YODYIUM Tipsuwan, et al. Neural-network-based Motor Rolling Bearing Fault Diag- nosis [J]. IEEE Transactions on Industrial Electronics, 2000,45 (5) ; 1060-1068.
  • 7Miguel Delgado Prieto, Giansalvo Cirrineione, Antonio Garcia Espinosa, et al. Bearing Fault Detection by a Novel Condition-monitoring Scheme Based on Statistical-time Features and Neural Networks[J]. IEEE Transactions on Industrial Electronics, 2013,60(8) : 3398-3407.
  • 8MOURA E P, SOUTO C R, SILVA A A, et al. Evalua- tion of Principal Component Analysis and Neural Network Performance for Bearing Fault Diagnosis from Vibration Signal Processed by RS and DF Analyses[J]. Mechanical Systems and Signal Processing,2011,25(5) :1765-1772.
  • 9CASTEJON C, LARA O, GARCIA-PRADA JC. Auto- mated Diagnosis of Rolling Bearings Using MRA and Neu- ral Networks[J]. Mechanical Systems And Signal Process- ing, 2010,24 (1): 289-299.
  • 10WU Z H, HUANG N E. Ensemble Empirical Mode De- composition: A Noise Assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis, 2009,1 (1) : 1-41.

共引文献52

同被引文献26

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部