期刊文献+

A quantum federated learning framework for classical clients

原文传递
导出
摘要 Quantum federated learning(QFL)enables collaborative training of a quantum machine learning(QML)model among multiple clients possessing quantum computing capabilities,without the need to share their respective local data.However,the limited availability of quantum computing resources poses a challenge for each client to acquire quantum computing capabilities.This raises a natural question:Can quantum computing capabilities be deployed on the server instead?In this paper,we propose a QFL framework specifically designed for classical clients,referred to as CC-QFL,in response to this question.In each iteration,the collaborative training of the QML model is assisted by the shadow tomography technique,eliminating the need for quantum computing capabilities of clients.Specifically,the server constructs a classical representation of the QML model and transmits it to the clients.The clients encode their local data onto observables and use this classical representation to calculate local gradients.These local gradients are then utilized to update the parameters of the QML model.We evaluate the effectiveness of our framework through extensive numerical simulations using handwritten digit images from the MNIST dataset.Our framework provides valuable insights into QFL,particularly in scenarios where quantum computing resources are scarce.
出处 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS CSCD 2024年第5期1-10,共10页 中国科学:物理学、力学、天文学(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.62371069,62272056,and 62372048) Beijing Natural Science Foundation(Grant No.4222031) China Scholarship Council(Grant No.202006470011)。
关键词 CLIENT SERVER QUANTUM
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部