期刊文献+

基于改进RRT算法的智慧小区物料小车路径规划

Path Planning of Material Trolleys in Smart Communities Based on Improved RRT Algorithm
在线阅读 下载PDF
导出
摘要 针对快速搜索随机树(RRT)算法在物料小车路径规划算法中路径转折点多、路径较长、算法运行速度慢等问题,开展了一种基于改进RRT算法的物料小车路径规划算法研究。首先分析了RRT算法与RRT-C算法的原理与优缺点;然后,提出针对优化目标点寻找的采样优化策略、步长优化策略以及保证物料小车运行安全的转角约束条件;最后,采用剪枝优化以及圆切角路径平滑策略来优化所得路径以符合物料小车实际运行线路,并将障碍物进行膨胀化处理,进而规避安全性不足的问题。优化后的RRT算法比初始方法在规划时长和路径长度上分别有着40%~60%和15%~30%的提升,证明了所提方法的有效性。基于改进RRT算法的智慧小区物料小车路径规划研究具有重要的理论和应用意义,并对未来智慧小区动态物流管理系统的优化提供了基础。 Aiming at the problems of the rapid search random tree(RRT)algorithm in the material trolley path planning algorithm,such as many turning points,long path length,and slow algorithm running speed,a research on the material trolley path planning algorithm based on improved RRT was carried out.This article first analyzes the principles,advantages and disadvantages of the RRT algorithm and the RRT-C algorithm.Then,it proposes a sampling optimization strategy for finding the optimization target point,a step size optimization strategy,and corner constraint conditions to ensure the safety of the material trolley.Finally,pruning optimization and rounded angle path smoothing strategies are used to optimize the path to match the actual running route of the material trolley,and the obstacles are expanded to avoid the problem of insufficient safety.The optimized RRT algorithm has an improvement of 40%~60%and 15%~30%in planning time and path length respectively compared with the initial method,which proves the effectiveness of this method.Research on the path planning of material trolleys in smart communities based on the improved RRT algorithm has important theoretical and application significance,and provides a basis for the optimization of dynamic logistics management systems in smart communities in the future.
作者 蔡浩 诸云 于明爽 殷振宇 CAI Hao;ZHU Yun;YU Mingshuang;YIN Zhenyu(School of Automation,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《无人系统技术》 2024年第2期92-100,共9页 Unmanned Systems Technology
基金 智能机器人湖北省重点实验室开放基金(HBIR-202304)。
关键词 路径规划 物料小车 快速搜索随机树算法 采样策略 剪枝优化 路径平滑 Path Planning Material Trolley Rapidly-exploring Random Trees Algorithm Sampling Strategy Pruning Optimization Path Smoothing
  • 相关文献

参考文献7

二级参考文献60

  • 1迟旭,李花,费继友.基于改进A^(*)算法与动态窗口法融合的机器人随机避障方法研究[J].仪器仪表学报,2021,42(3):132-140. 被引量:86
  • 2唐华斌,王磊,孙增圻.基于随机采样的运动规划综述[J].控制与决策,2005,20(7):721-726. 被引量:10
  • 3刘华军,杨静宇,陆建峰,唐振民,赵春霞,成伟明.移动机器人运动规划研究综述[J].中国工程科学,2006,8(1):85-94. 被引量:75
  • 4FAVERJON B, TOURNASSOUD P. A practical approach to motion planning for manipulator with many degrees of freedom[ M ]. Cambridge : MIT Press, 1990:65-73.
  • 5KATEVAS N I, TZAFESTAS S G, PNEVMATIKATOS C G. The approximate cell decomposition with local node refinement global path planning method: path nodes refinement and curve parametric interpolation [ J]. Journal of Intel- ligent and Robotic Systems : Theory and Applications, 1998, 22(3) : 289-314.
  • 6KAVRAKI L E, LATOMBE J C, OVERMARS M. Probabilistic roadmap for path planning in high-dimensional configuration spaces [ J ]. IEEE Transactions on Robotics and Automation, 1996,12 (4) :566-580 .
  • 7AMATO N M, WU Y. A randomized roadmap method for path and manipulation planning [ C ]//Proceedings of the IEEE International Conference on Robotics and Automation. Minneapolis, 1996 : 113-120.
  • 8KUMIAWATII H. Overview of motion planning problem & probabilistic roadmap planner [ R]. Media Tech Discussion Group ,2004, 1-60.
  • 9MELCHIOR N A,SIMMONS R. Particle RRT for path planning with uncertainty[ C]//Proc of the IEEE International conference on Robotics and Automation. Roma, Italy,2007: 1617-1624.
  • 10BU X, SU H, ZOU W, et al. Curvature continuous path smoothing based on cubic Bezier curves for car-like vehicles [ C ]. Proceedings of IEEE International Conference on Robotics and Biomimetics, 2015 : 1453 -1458.

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部