期刊文献+

基于慢特征分析的分布式动态工业过程运行状态评价 被引量:2

Distributed Operating Performance Assessment of Dynamic Industrial Processes Based on Slow Feature Analysis
在线阅读 下载PDF
导出
摘要 现代工业过程通常具有规模大、流程长和工序多的特点,导致传统的集中式建模方法会淹没过程的局部变化信息,从而无法及时识别早期的非优运行状态.此外,闭环控制的广泛应用使得过程变量普遍存在时序相关性.针对以上问题,提出一种基于慢特征分析(Slow feature analysis, SFA)的分布式动态工业过程运行状态评价方法.首先,结合动态时间规整(Dynamic time warping, DTW)和K-medoids聚类算法对过程进行分解;然后,对每一变量子块建立相应的动态慢特征分析(Dynamic slow feature analysis, DSFA)模型;最后,利用贝叶斯推理获得全局的综合评价指标.通过在数值案例和金湿法冶金过程的仿真应用,验证了该方法的有效性. The modern industrial processes are generally characterized by large scale, long processes and multiple procedures. In this case, the traditional centralized model may submerge the local change information of the processes, thus failing to identify the early non-optimal operation status in time. In addition, the wide application of closed-loop control brings the universal existence of temporal correlations of process variables. In view of the above problem, a distributed operating performance assessment scheme of dynamic industrial processes based on slow feature analysis (SFA) is proposed. First, the process decomposition is realized by combining dynamic time warping (DTW) and K-medoids clustering algorithms. Second, the corresponding dynamic slow feature analysis (DSFA) model is established for each sub-block. Finally, the overall comprehensive assessment index is obtained through Bayesian inference. The effectiveness of the scheme is verified by numerical examples and gold hydrometallurgy process.
作者 钟林生 常玉清 王福利 高世红 ZHONG Lin-Sheng;CHANG Yu-Qing;WANG Fu-Li;GAO Shi-Hong(College of Information Science and Engineering,Northeastern University,Shenyang 110819;State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819;School of Automation and Software Engineering,Shanxi University,Taiyuan 030006)
出处 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期745-757,共13页 Acta Automatica Sinica
基金 国家自然科学基金(62273078,61973057) 国家重点研发计划(2021YFF0602404,2021YFC2902703)资助。
关键词 分布式模型 运行状态评价 慢特征分析 动态时间规整 K-medoids聚类 Distributed model operating performance assessment slow feature analysis(SFA) dynamic time warping(DTW),K-medoids clustering
  • 相关文献

参考文献7

二级参考文献48

共引文献52

同被引文献22

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部