期刊文献+

基于度量学习的多分支舌象识别网络

Metric learning based multi-branch network for tongue manifestation recognition
在线阅读 下载PDF
导出
摘要 为提升舌象识别效率与精准度,通过度量学习研究辅助医生识别舌象表征的方法。首先,收集舌诊图像111例,数据按照7:3的比例随机分为训练集和测试集。然后,设计一种基于度量学习的多分支舌象识别网络。深度学习网络被分为两个部分,前半部分为共享权重层,采用基于度量学习的舌象特征编码损失函数,以获得精准的特征;后半部分针对中医舌象的分类分为4个舌象识别辅助分支,降低舌象识别难度,提升准确率。此外,构建多标签残差映射,增加类间距,减小类内距,提升最终识别的准确度。本文方法在舌象数据集的测试集上进行测试时获得84.8%的识别精度,表明多分支网络架构可以很好地降低舌象识别难度,特别是特征类别较多的舌形和苔质。同时,舌象特征编码损失函数可以有效地提取舌象特征;舌象多标签残差映射可以减少各类别之间的干扰,从而提升识别准确度。 Based on metric learning,a novel method of assisting doctors in identifying tongue manifestation is proposed to improve the efficiency and accuracy of tongue manifestation recognition.A total of 111 tongue images are collected,and the data are randomly divided into training set and test set at a ratio of 7:3.Subsequently,a metric learning based multi-branch tongue manifestation recognition network is designed.The deep learning network is divided into 2 parts.The first part is the shared weight layer which employs metric learning based loss function in tongue manifestation feature coding to obtain accurate features.In order to reduce the difficulty of tongue manifestation recognition and improve the accuracy,the latter part is split into 4 branches for tongue manifestation recognition which correspond to the classification of tongue manifestation in traditional Chinese medicine.Additionally,a multi-label residual mapping is constructed to increase interclass distance and reduce intra-class distance,so as to enhance the accuracy of final recognition.The proposed method achieves a recognition accuracy of 84.8% on the test set of tongue manifestation dataset,indicating that multi-branch network architecture can lower the difficulties in tongue manifestation recognition,especially for the tongue shape and coating nature with multiple feature categories.The loss function in tongue manifestation feature coding can effectively extract tongue features,while multi-label residual mapping can reduce the interference between different categories,which improves the recognition accuracy.
作者 任思羽 吴瑞 罗庆林 肖开慧 王艺凡 利节 REN Siyu;WU Rui;LUO Qinglin;XIAO Kaihui;WANG Yifan;LI Jie(Teaching Department of the Open University of Chengdu,Chengdu 610000,China;School of Intelligent Technology and Engineering,Chongqing University of Science and Technology,Chongqing 401331,China;Chongqing Kerui Pharmaceutical Co.,Ltd.,Chongqing 400060,China;Department of Traditional Chinese Medicine,Beijing Friendship Hospital,Capital Medical University,Beijing 100050,China)
出处 《中国医学物理学杂志》 CSCD 2024年第4期521-528,共8页 Chinese Journal of Medical Physics
基金 国家科技部“科技助力经济2020”重点专项(SQ2020YFF0405970) 重庆市自然科学基金(cstc2020jcyj-msxmX0683) 重庆市教委科学技术研究项目(KJQN201901507) 重庆科技学院硕士研究生创新计划(ZNYKJCX2022023)。
关键词 舌象识别 多分支网络架构 特征编码 损失函数 多标签残差映射 tongue manifestation recognition multi-branch network architecture feature coding loss function multi-label residual mapping
  • 相关文献

参考文献10

二级参考文献101

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部