期刊文献+

基于机器学习理论的SWMM参数自动率定方法

Automatic Calibration Method of SWMM Parameters Based on Machine Learning Theory
原文传递
导出
摘要 SWMM作为一种模拟降雨情况的软件,由于其模型参数在经验范围内选取的不确定性,随着模型不断地向前运行演绎,误差会持续累积,最终影响模型的模拟结果,而传统的参数率定方法则具有效率低、准确度差等缺点。为此,利用MATLAB软件调用SWMM的水力演算程序来完成两者的数据交互与集成,结合多元逐步回归法筛选出敏感性高的参数作为率定对象,进而通过数值实验的方式以敏感性分析结果为依据使用Bayes-MH机器学习算法实现SWMM参数的自动率定。对于不同的实测降雨场景,自动率定的结果均能够顺利输出,参数匹配度达95%以上,表明了该方法具备优秀的稳定性、自适应性与全范围寻参能力。 As a kind of software for simulating rainfall situation,errors of SWMM will accumulate continuously with the operation of the model,and ultimately affect the simulation results of the model due to the uncertainty in the selection of model parameters within the empirical range.The traditional parameter calibration methods have the disadvantages such as low efficiency and poor accuracy.Therefore,this paper completed the data interaction and integration between MATLAB and SWMM by using MATLAB to call the hydraulic calculus program of SWMM,selected the parameters with high sensitivity as the calibration object by using multiple stepwise regression method,and eventually realized the automatic calibration of SWMM parameters by using Bayes-MH machine learning algorithm and numerical experiment based on the sensitivity analysis.In different measured rainfall scenarios,the results of automatic calibration were output smoothly,and the parameter matching degree was more than 95%,indicating that the method had excellent stability,self-adaptability and full-range parameter searching ability.
作者 康得军 赖李保壹 邱福杰 温儒杰 吴端炜 赵颖 KANG De-jun;LAI Li-bao-yi;QIU Fu-jie;WEN Ru-jie;WU Duan-wei;ZHAO Ying(College of Civil Engineering,Fuzhou University,Fuzhou 350108,China;Fuzhou University Jinjiang Science and Education Park,Jinjiang 362251,China;Zhuotian Town Government of Changting County in Longyan City of Fujian Province,Longyan 366300,China;Huadong Engineering<Fujian>Corporation,Fuzhou 350001,China;Capital Engineering&Research Incorporation Limited,Beijing 100176,China;Central&Southern China Municipal Engineering Design and Research Institute Co.Ltd.,Wuhan 430010,China;Chinese Research Academy of Environmental Sciences,Beijing 100012,China)
出处 《中国给水排水》 CAS CSCD 北大核心 2024年第5期122-129,共8页 China Water & Wastewater
基金 北京建筑大学未来城市设计高精尖创新中心开放课题(UDC2017032512)。
关键词 机器学习理论 Metropolis-Hastings算法 雨洪管理模型(SWMM) MATLAB 参数自动率定 machine learning theory Metropolis-Hastings algorithm storm water management model(SWMM) MATLAB automatic parameter calibration
  • 相关文献

参考文献8

二级参考文献72

共引文献222

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部