期刊文献+

一种基于PSO-VMD和LSTM的复杂山地风电场观测风速数据质量控制算法 被引量:1

A QUALITY CONTROL ALGORITHM OF WIND SPEED OBSERVATIONS IN COMPLEX MOUNTAIN WIND FARM BASED ON PSO-VMD AND LSTM
在线阅读 下载PDF
导出
摘要 复杂山地风电场普遍存在观测风速数据质量差引起风资源评估误差大、风功率预测精度低的问题。而复杂山地风速呈现较强的间隙性、波动性和非平稳性,导致常规质量控制方法无法有效提高数据质量。针对此,提出一种基于粒子群改进变分模态分解和长短期记忆网络的集成学习算法(PVL),并应用于复杂山地观测风速的质量控制以提高风速数据的质量。以广西某复杂山地风场内5基观测塔2015—2016年逐10 min风速数据为案例进行PVL应用效果检验,并与传统单站及空间回归法、反距离加权法进行对比。应用表明,PVL比传统方法具有更高的寻误率,且在异地形、多风况上具有更强的适应性。 There are many problems in complex mountain wind farms,such as large errors of wind resource evaluation and low accuracy of wind power prediction caused by poor quality of observed wind speed data.Because of the strong intermittent,fluctuating,and nonstationary characteristics presented by the wind speed in complex mountain wind farms,conventional quality control methods cannot effectively improve data quality.For this situation,an integrated learning algorithm(PVL)based on particle swarm optimization improved variational modal decomposition improved by particle swarm optimization and long short-term memory is proposed and applied to the quality control of wind speed observations in complex mountainous areas to improve the quality of wind speed data.In order to assess the feasibility and applicability of the proposed method,the 10 minutes wind speed observed in five observation tower of a complex mountain wind farm in Guangxi from 2015 to 2016 were examined.Otherwise,we compared this method to spatial regression test(SRT)and inverse distance weighting method(IDW).The results show that the method can more effectively flag suspicious data,and it also has the advantages of high identification accuracy,strong adaptability to different terrains and wind conditions.
作者 熊雄 姚润进 程帅兵 李文龙 钱栋 Xiong Xiong;Yao Runjin;Cheng Shuaibing;Li Wenlong;Qian Dong(Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology,Information and Systems Science Institute,NUIST,Nanjing 210044,China;Carbon Neutralization Research Institute,PowerChina Jiangxi Electric Power Construction Co.,Ltd.,Nanjing 210018,China;Jiangsu Key Laboratory of Offshore Wind Power Blade Design and Manufacturing Technology,Nanjing 210000,China;Jiangxi Branch,China Three Gorges New Energy(Group)Co.,Ltd.,Nanchang 330038,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2024年第3期95-104,共10页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(42205150,42275156) 江苏省自然科学基金(BK20210661) 中国电建集团江西省电力建设有限公司科技项目(JEPCC-KYXM-2023-002)。
关键词 风电场 质量控制 粒子群 变分模态分解 长短期记忆网络 wind farm quality control particle swarm optimization variational modal decomposition long short-term memory
  • 相关文献

参考文献10

二级参考文献90

共引文献543

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部