期刊文献+

Dynamic Scene Graph Generation of Point Clouds with Structural Representation Learning

原文传递
导出
摘要 Scene graphs of point clouds help to understand object-level relationships in the 3D space.Most graph generation methods work on 2D structured data,which cannot be used for the 3D unstructured point cloud data.Existing point-cloud-based methods generate the scene graph with an additional graph structure that needs labor-intensive manual annotation.To address these problems,we explore a method to convert the point clouds into structured data and generate graphs without given structures.Specifically,we cluster points with similar augmented features into groups and establish their relationships,resulting in an initial structural representation of the point cloud.Besides,we propose a Dynamic Graph Generation Network(DGGN)to judge the semantic labels of targets of different granularity.It dynamically splits and merges point groups,resulting in a scene graph with high precision.Experiments show that our methods outperform other baseline methods.They output reliable graphs describing the object-level relationships without additional manual labeled data.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期232-243,共12页 清华大学学报(自然科学版(英文版)
基金 This work was supported by the National Natural Science Foundation of China(Nos.62173045 and 61673192) the Fundamental Research Funds for the Central Universities(No.2020XD-A04-2) the BUPT Excellent PhD Students Foundation(No.CX2021222).
  • 相关文献

参考文献1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部