期刊文献+

基于虚拟力的水下传感器监控反潜策略研究

Research on Anti-submarine Strategy of Underwater Sensor Monitoring Based on Virtual Force
在线阅读 下载PDF
导出
摘要 近年来无人潜航器对海上重要目标的威胁逐渐增大,体积小、噪声低、行动隐蔽的特点使其很难被发现。为此提出了一个基于虚拟力的传感器监控网络构建算法,通过将三维地形分割,得到面积最小的垂直切面。在该切面上部署传感器,定义了传感器所受重力、互相之间斥力以及边界斥力,在合力的作用下达到平衡状态时完成传感器部署。理论分析和仿真验证表明,提出的算法对复杂地形适应性强,能够根据覆盖率要求得到对应的传感器部署策略,与传统方法相比更灵活,且通过与VFOPCA算法比较,其能耗更低收敛更快。该研究对监控无人潜航器的侵入有指导借鉴意义。 In recent years,the threat of unmanned underwater vehicles to important targets at sea has gradually increased.The characteristics of small size,low noise and concealed actions make it difficult to be detected.A sensor monitoring network construction algorithm based on virtual force is proposed accord-ingly.First,the vertical section with the smallest area is obtained by dividing the three-dimensional terrain.Secondly,a sensor is deployed on this section,the gravity,mutual repulsion and boundary repulsion of the sensor-are defined,and the sensor deployment is finished when the resultant force reaches the equilibrium state.The theoretical analysis and simulation verification show that the proposed algorithm has strong adapt-ability to complex terrain,and can obtain the corresponding sensor deployment strategy according to the coverage requirements.Compared with the traditional method,it is more flexible,and compared with the VFOPCA algorithm,its energy consumption is lower and the convergence is faster.This research has guid-ing and reference significance for monitoring the intrusion of unmanned underwater vehicles.
作者 张鸿强 曾斌 张利龙 ZHANG Hongqiang;ZENG Bin;ZHANG Liong(Department of Management and Economics,Naval University of Engineering,Wuhan 430033,China;Teaching and Research Support Center,Naval University of Engineering,Wuhan 430033,China)
出处 《火力与指挥控制》 CSCD 北大核心 2024年第1期49-55,共7页 Fire Control & Command Control
基金 国家优秀青年科学基金资助课题(42122025)。
关键词 水下传感器网络 三维地形 虚拟力 栅栏覆盖 反潜 underwater sensor network 3D terrain,virtual force fence cover anti-submarine
  • 相关文献

参考文献6

二级参考文献56

  • 1佟盛.国外水声系统技术发展动向[J].声学与电子工程,2006(B07):101-104. 被引量:2
  • 2Gage D W. Command control for many-robot systems. In: Proceedings of the 19th Annual AUVS Technical Sympo- sium. Huntsville, USA: Unmanned Systems, 1992. 28-34.
  • 3Wang G L, Cao G H, Porta T F L. Movement-assisted sen- sor deployment. IEEE Transactions on Mobile Computing, 2006, 5(6): 640-652.
  • 4Cortes J, Martinez S, Karatas T, Bullo F. Coverage control for mobile sensing networks. IEEE Transactions on Robotics and Automation, 2004, 20(2): 243-255.
  • 5Heo N, Varshney P K. Energy-efficient deployment of intel- ligent mobile sensor networks. IEEE Transactions on Sys- tems, Man, and Cybernetics, Part A: Systems and Humans, 2005, 35(1): 78-92.
  • 6Jorgic M, Stojmenovic I, Hauspie M, Simplot-Ryl D. Lo- calized algorithms for detection of critical nodes and links for connectivity in ad hoc networks. In: Proceedings of the 3rd Annual Mediterranean Ad Hoc Networking Workshop. Bodrum, Turkey: IEEE, 2004. 360-371.
  • 7Das S, Liu H, Nayak A, Stojmenovic I. A localized algorithm for bi-connectivity of connected mobile robots. Telecommu- nication Systems, 2008, 40(3-4): 129-140.
  • 8Zou Y, Chakrabarty K. Sensor deployment and target local- ization based on virtual forces. In: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer Communi- cations. Washington D. C., USA: IEEE, 2003. 1293-1303.
  • 9Howard A, Mataric M J, Sukhatme G S. Mobile sensor net- work deployment using potential field: a distributed scalable solution to the area coverage problem. In: Proceedings of the 6th International Symposium on Distributed Autonomous Robotic Systems. Fukuoka, Japan: Springer, 2002. 299-308.
  • 10Tan G, Jarvis S A, Kermarrec A M. Connectivity- guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks. In: Proceedings of the 28th In- ternational Conference on Distributed Computing Systems. Washington D. C., USA: IEEE, 2008. 429-437.

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部