期刊文献+

Memory effect in time fractional Schrödinger equation

在线阅读 下载PDF
导出
摘要 A significant obstacle impeding the advancement of the time fractional Schrodinger equation lies in the challenge of determining its precise mathematical formulation.In order to address this,we undertake an exploration of the time fractional Schrodinger equation within the context of a non-Markovian environment.By leveraging a two-level atom as an illustrative case,we find that the choice to raise i to the order of the time derivative is inappropriate.In contrast to the conventional approach used to depict the dynamic evolution of quantum states in a non-Markovian environment,the time fractional Schrodinger equation,when devoid of fractional-order operations on the imaginary unit i,emerges as a more intuitively comprehensible framework in physics and offers greater simplicity in computational aspects.Meanwhile,we also prove that it is meaningless to study the memory of time fractional Schrodinger equation with time derivative 1<α≤2.It should be noted that we have not yet constructed an open system that can be fully described by the time fractional Schrodinger equation.This will be the focus of future research.Our study might provide a new perspective on the role of time fractional Schrodinger equation.
作者 祖传金 余向阳 Chuanjin Zu;Xiangyang Yu(School of Physics,State Key Laboratory of Optoelectronic Materials and Technologies,Sun Yat-Sen University,Guangzhou 510275,China)
机构地区 School of Physics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期216-221,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foun dation of China(Grant No.11274398).
  • 相关文献

参考文献4

二级参考文献44

  • 1Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 65 3215.
  • 2Aghababa M P 2011 Nonlinear Dyn. 69 247.
  • 3Lu L, Li G, Guo L, Meng L, Zou J R and Yang M 2010 Chin. Phys. B 19 080507.
  • 4Liu Y Z, Jiang C S, Lin C S and Jiang Y M 2007 Chin. Phys. 16 660.
  • 5AghababaMP 2011 Chin. Phys. B 20 090505.
  • 6Hu J and Zhang Q J 2008 Chin. Phys. B 17 503.
  • 7Aghababa M P 2012 Chin. Phys. B 17 030502.
  • 8Bowong S 2007 Nonlinear Dyn. 49 59.
  • 9Chen H K 2002 J. Sound Vibr. 255 719.
  • 10Dooren R V 2008 J. Sound Vib. 268 632.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部