期刊文献+

深度对两体抛光单晶铜影响的数值模拟分析

Numerical simulation analyses of the effect of depth on two-body polished single crystal copper
在线阅读 下载PDF
导出
摘要 在实际抛光过程中,磨粒会以不同的抛光速度与抛光深度对工件进行抛光,当加工参数改变时,抛光产生的力,切屑的形式及工件内部产生的缺陷不同,通过分子动力学仿真,建立纳米尺度下的两体抛光单晶铜模型,探究在抛光过程中深度变化对单晶铜的影响。结果表明:抛光深度对切向力的影响大于法向力,且随着抛光深度的增加,抛光力稳定性降低;抛光深度对侧向力稳定性的影响最大,随着抛光深度的增加,切屑的侧流减小,但增加了工件表面的滑移现象,使工件表面质量降低。 In the actual polishing process,the abrasive polishes a workpiece at different polishing speeds and different polishing depths,and when these processing parameters are changed,polishing forces,the form of chips and defects of generated inside the workpiece are different.Due to molecular dynamics simulation,a model of two-body polished single-crystal copper with the nanoscale is established,so as to investigate the effect of depth changes on single crystal copper in the polishing process.It is found that the effect of polishing depths on the tangential force is greater than the normal force,and stabilities of polishing force decrease with the increase of polishing depths,which have the greatest effect on the stability of lateral forces.The increase of polishing depths can reduce the lateral flow of chips and can increase slip phenomena on the workpiece surface,and making the surface quality of the workpiece deteriorates.
作者 王桂莲 朱文达 冯志坚 张善青 WANG Guilian;ZHU Wenda;FENG Zhijian;ZHANG Shanqing(Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control,Tianjin University of Technology,Tianjin 300384,China;National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,Tianjin University of Technology,Tianjin 300384,China)
出处 《天津理工大学学报》 2023年第5期1-8,共8页 Journal of Tianjin University of Technology
基金 天津市自然科学基金(18JCYBJC20100)。
关键词 单晶铜 抛光深度 分子动力学 抛光力 single crystal copper polishing depth molecular dynamics polishing force
  • 相关文献

参考文献4

二级参考文献36

  • 1刘雄伟,袁哲俊,刘华明.工程中几种实用的插值曲面[J].机电工程,1994,11(1):21-23. 被引量:2
  • 2郭晓光,郭东明,康仁科,金洙吉.单晶硅超精密磨削过程的分子动力学仿真[J].机械工程学报,2006,42(6):46-50. 被引量:24
  • 3Baskes M I, Nelson J S, Wright A F. Semiempirical modified embedded-atom potentials for silicon and germanium[J].Phys. Rev. B, 1989,40:6085-6109.
  • 4Abell G C. Empirical chemical pseudopotential theory of molecular and metallic bonding [ J]. Phys. Rev. B, 1985,31:6184-6196.
  • 5Tersoff J. New Empirical Modal for the Structural Properties of Silicon[ J]. Phys. Rev. Lett, 1986,56:632-635.
  • 6Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films[J]. Phys. Rev. B,1990,42:9458-9471.
  • 7Stillinger, Weber T. Computer simulation of local order in condensed phases of silicon [ J]. Phys. Rev. B, 1985,31:5262-5271.
  • 8Kohan A F, Ceder G. Tight-binding calculation of formation energies in multicomponent oxides:Application to the MgOCaO phase diagram[ J]. Phys. Rev. B, 1996,54:805-811.
  • 9Laurent J. Lewis and Normand Mousseau. Tight-binding molecular-dynamics studies of defects and disorder in covalently bonded materials [ J]. Computational Materials Science,1998,12:210-241.
  • 10Biswas R, Hamann D R. Interatomic Potentials for Silicon Structural Energies [ J]. Phys. Rev. Lett, 1985,55: 2001-2005.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部