期刊文献+

融合特征选择的随机森林DDoS攻击检测 被引量:7

DDoS attack detection by random forest fused with feature selection
在线阅读 下载PDF
导出
摘要 现有基于机器学习的分布式拒绝服务(DDoS)攻击检测方法在面对愈发复杂的网络流量、不断升维的数据结构时,检测难度和成本不断上升。针对这些问题,提出一种融合特征选择的随机森林DDoS攻击检测方法。该方法选用基于基尼系数的平均不纯度算法作为特征选择算法,对DDoS异常流量样本进行降维,以降低训练成本、提高训练精度;同时将特征选择算法嵌入随机森林的单个基学习器,将特征子集搜索范围由全部特征缩小到单个基学习器对应特征,在提高两种算法耦合性的同时提高了模型精度。实验结果表明,融合特征选择的随机森林DDoS攻击检测方法训练所得到的模型,在限制决策树棵数和训练样本数量的前提下,召回率相较于改进前提升21.8个百分点,F1-score值提升12.0个百分点,均优于传统的随机森林检测方案。 Exsiting machine learning-based methods for Distributed Denial-of-Service(DDoS)attack detection continue to increase in detection difficulty and cost when facing more and more complex network traffic and constantly increased data structures.To address these issues,a random forest DDoS attack detection method that integrates feature selection was proposed.In this method,the mean impurity algorithm based on Gini coefficient was used as the feature selection algorithm to reduce the dimensionality of DDoS abnormal traffic samples,thereby reducing training cost and improving training accuracy.Meanwhile,the feature selection algorithm was embedded into the single base learner of random forest,and the feature subset search range was reduced from all features to the features corresponding to a single base learner,which improved the coupling of the two algorithms and improved the model accuracy.Experimental results show that the model trained by the random forest DDoS attack detection method that integrates feature selection has a recall increased by 21.8 percentage points and an F1-score increased by 12.0 percentage points compared to the model before improvement under the premise of limiting decision tree number and training sample size,and both of them are also better than those of the traditional random forest detection scheme.
作者 徐精诚 陈学斌 董燕灵 杨佳 XU Jingcheng;CHEN Xuebin;DONG Yanling;YANG Jia(College of Sciences,North China University of Science and Technology,Tangshan Hebei 063210,China;Hebei Provincial Key Laboratory of Data Science and Application(North China University of Science and Technology),Tangshan Hebei 063210,China;Tangshan Key Laboratory of Data Science,North China University of Science and Technology,Tangshan Hebei 063210,China)
出处 《计算机应用》 CSCD 北大核心 2023年第11期3497-3503,共7页 journal of Computer Applications
基金 国家自然科学基金资助项目(U20A20179)。
关键词 分布式拒绝服务 特征选择 基尼系数 平均不纯度算法 随机森林算法 Distributed Denial-of-Service(DDoS) feature selection Gini coefficient mean impurity algorithm random forest algorithm
  • 相关文献

参考文献1

二级参考文献9

共引文献136

同被引文献25

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部