期刊文献+

基于GA-BP神经网络的尾煤水灰分视觉检测方法研究

Research on Visual Detection Method of Ash Content in Tailing Coal Water Based on GA‑BP Neural Network
在线阅读 下载PDF
导出
摘要 针对浮选回归模型精度和适应性较差的问题,提出了一种基于遗传算法优化反向传播神经网络(GA-BP)的尾煤水灰分视觉检测方法。对尾煤水图像进行预处理,在去除主要噪声干扰和保证一定彩色特征完整的前提下,提取不同颜色空间的彩色特征、灰度特征以及浓度特征值;以上述特征值为输入变量,以尾煤水灰分作为输出变量,建立基于遗传算法优化BP神经网络(GA-BP)的回归模型。该模型较好地实现了尾煤水灰分的在线检测,预测精度达97.3%,均方误差降低至0.23,提高了精煤产率和经济效益。 Aiming at the poor accuracy and adaptability of flotation regression model,a visual detection method of ash content in tailings coal water based on GA-BP optimized by genetic algorithm is proposed.Firstly,the tail coal water image is preprocessed.On the premise of removing the main noise interference and ensuring the integrity of certain color features,the color features,gray features and concentration feature values of different color spaces are extracted.With the above eigenvalues as input variables and tailing ash content as output variables,a regression model based on genetic algorithm optimization of BP neural network(GA-BP)is established.The model can well realize the on-line detection of ash content in tail coal water,the prediction accuracy reaches 97.3%,and the mean square error is reduced to 0.23,which improves the clean coal yield and economic benefits.
作者 岳耀辉 孙涛 王昱晨 曹英华 鹿新建 秦录芳 YUE Yaohui;SUN Tao;WANG Yuchen;CAO Yinghua;LU Xinjian;QIN Lufang(School of Mechanical Engineering,Yancheng Institute of Technology,Yancheng Jiangsu 224051,China;School of Mechanical and Electrical Engineering,Xuzhou University of Technology,Xuzhou Jiangsu 221018,China;Jiangsu Shineng Industrial Technology Co.,Ltd.,Xuzhou Jiangsu 221000,China)
出处 《盐城工学院学报(自然科学版)》 CAS 2023年第3期28-33,共6页 Journal of Yancheng Institute of Technology:Natural Science Edition
基金 江苏省产学研合作项目(BY20221289) 徐州市产业重点技术研发项目(KC21100) 江苏省研究生科研与实践创新计划项目(SJCX22_XY041)。
关键词 煤泥灰分 图像处理 彩色特征 遗传算法 BP神经网络 coal slurry ash content image processing color feature genetic algorithm BP neural network
  • 相关文献

参考文献11

二级参考文献90

共引文献111

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部