摘要
为研究水中悬浮隧道在波浪荷载作用下管体的加速度特性,开展模型结构比尺为1∶60的两端自由椭圆形断面模型试验,并基于模型试验进行波浪荷载作用下椭圆形管段关键点加速度响应分析,讨论周期和波高对管体纵向加速度、横向加速度、竖向加速度的时程变化、变换频域和极值大小的影响。结果表明:1)管体纵向、横向、竖向加速度时程均随波高的增大而增大,纵向加速度最大值有较大波动;2)横向加速度时程由高频转向低频,加速度峰值有较为明显的非线性增长趋势;3)竖向加速度表现为多周期变化,加速度时程在小周期呈现为高频多峰趋势,随着周期的增大,其峰值先增大后减小。
To investigate the acceleration characteristics of the submerged floating tunnels(SFTs)under the action of wave load,a model test of the free elliptical section at both ends with a scale of 1:60 is conducted.First,the acceleration response of key points of the elliptical section under wave load is analyzed using the model test.Next,the influence of wave period and height on the time-history variation,frequency domain,and extreme values of longitudinal,transverse,and vertical acceleration of SFT are discussed.The results are summarized as follows:(1)The time-history of the longitudinal,transverse,and vertical acceleration of the tube increases with increasing wave height,and the maximum value of longitudinal acceleration fluctuates greatly.(2)The time-history of transverse acceleration changes from high frequency to low frequency,and the acceleration peaks show an obvious nonlinear growth trend.(3)The vertical acceleration exhibits a multiple and periodic variation.The time-history of acceleration displays a high-frequency and multi-peak in a small period,and its peak value increases initially,followed by a decrease with increasing wave period.
作者
王方
李科
丁浩
李鹏辉
何田
黄博
程亮
WANG Fang;LI Ke;DING Hao;LI Penghui;HE Tian;HUANG Bo;CHENG Liang(China Merchants Chongqing Communications Technology Research and Design Institute Co.,Ltd.,Chongqing 400067,China;School of Civil Engineering,Chongqing Jiaotong University,Chongqing 400074,China;State Key Laboratory of Mountain Bridge and Tunnel Engineering,Chongqing Jiaotong University,Chongqing 400074,China)
出处
《隧道建设(中英文)》
CSCD
北大核心
2023年第10期1741-1749,共9页
Tunnel Construction
基金
国家重点研发计划(2019YFB1600700)
国家自然科学基金(51978600)
重庆市科学技术局自然科学基金(cstc2019jcyj-msxmX0583)。
关键词
悬浮隧道
波浪荷载
加速度
模型试验
submerged floating tunnel
wave load
acceleration
model test