摘要
氮原子掺杂的镍基催化剂在OER和UOR过程中稳定存在并表现出高效的催化活性,然而通过精确调控原子结构在分子水平上优化催化剂固有活性和活性位点密度分布仍然具有挑战性.在这里,我们引入了一种乙二胺缩3-甲氧基水杨醛的单核镍基配合物作为前驱体,在惰性气氛下控制热解温度制备获得氮掺杂碳的核壳纳米结构Ni/NiO@NC,用作OER/UOR双功能电催化剂.高温热解导致配合物逐渐碳化形成多孔碳结构,丰富的表面缺陷和孔隙结构促进了活性位点的暴露,提高了催化剂的导电性,同时HR-TEM、XRD和Raman等基本表征证实了Ni/NiO异质结的形成. Ni/NiO_(x)@NC-700在基准电流密度为10 mA·cm^(-2)的1 mol/L KOH溶液中实现了284 mV的超低过电势,同时在1 mol/L KOH+0.33 mol/L Urea溶液中达到了1.392 V的电势.
Nitrogen-doped Ni-based catalysts are stable and exhibit efficient catalytic activity in OER and UOR processes,however,optimizing the intrinsic catalyst activity and active site density distribution at the molecular level by precisely tuning the atomic structure is still challenging.Here,we introduced a mononuclear nickel-based complex of ethylenediamine condensed 3-methoxysalicylaldehyde as a precursor,to obtain nitrogen-doped carbon-based core-shell nanostructured Ni/NiO@NC prepared under controlled pyrolysis temperature in an inert atmosphere for use as OER/UOR bifunctional electrocatalyst.It’s shown that high-temperature pyrolysis leads to the gradual carbonization of the complex to form porous carbon structures,and the abundant surface defects and pore structure promote the exposure of active sites and improve the conductivity of the catalyst,while basic characterizations such as HR-TEM,XRD and Raman confirme the formation of Ni/NiO heterojunctions.Ni/NiO x@NC-700 achieves an ultra-low overpotential of 284 mV in 1 mol/L KOH solution with a reference current density of 10 mA·cm^(-2),while achieving a potential of 1.392 V in 1 mol/L KOH+0.33 mol/L Urea solution.
作者
王璐
甘梅杏
周芳蕾
彭旭
WANG Lu;GAN Meixing;ZHOU Fanglei;PENG Xu(Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials,Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules,College of Chemistry and Chemical Engineering,Hubei University,Wuhan 430062,China)
出处
《湖北大学学报(自然科学版)》
CAS
2023年第6期815-822,共8页
Journal of Hubei University:Natural Science
基金
湖北省科学技术厅一般面上项目(210201201004)资助。
关键词
镍基配合物
高温热解
氮掺杂
OER/UOR
Ni-based complexes
high temperature pyrolysis
nitrogen doping
OER/UOR