期刊文献+

基于指标关联的舰载机出动架次率预测方法

Prediction method of carrier aircraft’s sortie rate based on index correlation
在线阅读 下载PDF
导出
摘要 舰载机出动架次率作为衡量航母战斗力的关键指标,对航母舰载机系统的安全高效运行十分重要。建立根据实时数据预测当前出动架次率的模型,将会为航母指挥官的实时调度提供重要参考。首先,从指标原始数据出发,基于大数据关联度分析、社区发现及主成分分析法,确定指标之间的树状关系,从而建立稀疏深度神经网络。同时,为了保证更好的训练效果,选取标准化、L2正则化、Adam优化器作为神经网络的优化算法进行训练。仿真结果表明,在航母舰载机持续性出动任务下,所提方法能够实现对舰载机出动架次率的快速、准确、实时预测。 As a key indicator to measure the combat effectiveness of an aircraft carrier,the carrier aircraft’s sortie rate is very important for the safe and efficient operation of the carrier-based aircraft system.Establishing a model that predicts the current sortie rate based on real-time data will provide an important reference for the aircraft carrier commander’s real-time scheduling.Firstly,starting from the original data of indicators,based on big data correlation analysis,community discovery,and principal component analysis,the tree-like relationship between indicators is determined,so as to establish a sparse deep neural network.At the same time,in order to ensure better training effect,standardization,L2 regularization,and Adam optimizer are selected as the optimization algorithm of the neural network.The simulation results show that the proposed method can achieve fast,accurate and real-time prediction of the sortie rate of carrier aircraft under the mission of continuous dispatch.
作者 邓嘉宁 李海旭 安强林 沙恩来 王泽 吴宇 DENG Jianing;LI Haixu;AN Qianglin;SHA Enlai;WANG Ze;WU Yu(College of Aerospace Engineering,Chongqing University,Chongqing 400044,China;China Shipbuilding System Engineering Research Institute,Beijing 100094,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2023年第11期3515-3523,共9页 Systems Engineering and Electronics
关键词 舰载机出动架次率 稀疏深度神经网络 Adam优化器 数据标准化 正则化 carrier aircraft’s sortie rate sparse depth neural network Adam optimizer date standardization regularization
  • 相关文献

参考文献10

二级参考文献68

  • 1DUAN HaiBin 1 ,SHAO Shan 2 ,SU BingWei 3 &ZHANG Lei 41 State Key Laboratory of Science and Technology on Holistic Flight Control,School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics,Beijing 100191,China,2 Flight Control Department,Shenyang Aircraft Design and Research Institute,Shenyang 110035,China,3 Beijing Institute of Near Space Vehicle’s System Engineering,Beijing 100076,China,4Integration and Project Section,Air Force Equipment Academy,Beijing 100085,China.New development thoughts on the bio-inspired intelligence based control for unmanned combat aerial vehicle[J].Science China(Technological Sciences),2010,53(8):2025-2031. 被引量:34
  • 2罗成汉.基于MATLAB神经网络工具箱的BP网络实现[J].计算机仿真,2004,21(5):109-111. 被引量:127
  • 3连翠萍,刘喜春,李群,黄教民.基于仿真优化的飞机维修备件优化问题研究[J].计算机仿真,2006,23(10):174-177. 被引量:11
  • 4赵冰化,王勇.军用飞机可用度概念模型及仿真[J].火力与指挥控制,2007,32(6):80-83. 被引量:9
  • 5F-22 aircraft progress in achieving engineering and manufacturing development goals [R]. GAO/NSIAD-98-67, 1998.
  • 6ANGELYN J. Sortie generation capacity of embarked airwings [R/OL]. ADA359178,1998 [2010-05-21 ]. http :// www.cna.org/documents/279801110.pdf.
  • 7ANGELYN J,MAUREEN A W,COLLEEN M K,et al. USS Nimitz and carrier airwing nine surge demonstration[R/OL]. 1998 [2010-08 -12]. http ://www.cna.org/documents/2797011110.pdf.
  • 8ROBERT M,STAMMER A. Database approach to aircraft carrier airplan production [ D ]. Monterey : Naval Postgradu- ate School, 1992.
  • 9JOSH T. Applying design of experiments (DOE) methodology to sortie generation rate 10th Annual NDIA Systems (SGR) evaluation [C/OLd// Engineering Conference. San Diego,2007 [2010-07-02]. http://www.dtic.mil/ndia/ 2007systems/Tuesday/PM/Track2/5489.pdf.
  • 10THOMAS P E, ROBERT O W. The unmanned combat air system carrier demonstration program:a new dawn for naval aviation? [R/OL]. Center for Strategies and Budgetary Assessments, 2007 [ 2011 -01 - 16 ]. http ://www. csiaonline.org/wp -content/uploads/2011/02/2007.05.10 - The -Unmanned -Combat -Air -System -Carrier -Demon- straion-Program.pdf.

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部